Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Dec;2(12 Suppl 2):S220-6.
doi: 10.1016/j.pmrj.2010.10.007.

Neural plasticity and locomotor recovery after spinal cord injury

Affiliations
Review

Neural plasticity and locomotor recovery after spinal cord injury

Keith E Tansey. PM R. 2010 Dec.

Abstract

The discussion of neural plasticity and locomotor recovery after spinal cord injury (SCI) focuses on 2 main themes, the issues associated with detecting neural plasticity in human beings and the issue of how to translate information from animal models, in which neural plasticity can be more readily studied, to human clinical research and application. This article discusses the importance of studying neural plasticity to better understand the effects of current rehabilitation interventions and to devise the next generation of therapies. It reviews the current spectrum of clinical, functional, anatomical, and neurophysiological assessments of patients that can be made in neurorehabilitation and the relationship between those measures and the study of neural plasticity. Then the similarities and differences between animal models and human SCI are discussed in relation to the severity of injury, the effect of locomotor training on gait recovery, the localization of neural plasticity associated with that gait recovery, and the implications for interpreting the "translatability" of animal model data to human study and clinical practice. In summary, it is concluded that the study of neural plasticity and locomotor recovery after SCI is really in its infancy but that it is critical for the advancement of the science of neurorehabilitation and "restorative neurology."

PubMed Disclaimer

MeSH terms

LinkOut - more resources