Population genomics of transposable elements in Drosophila melanogaster
- PMID: 21172826
- PMCID: PMC3080135
- DOI: 10.1093/molbev/msq337
Population genomics of transposable elements in Drosophila melanogaster
Abstract
Transposable elements (TEs) are the primary contributors to the genome bulk in many organisms and are major players in genome evolution. A clear and thorough understanding of the population dynamics of TEs is therefore essential for full comprehension of the eukaryotic genome evolution and function. Although TEs in Drosophila melanogaster have received much attention, population dynamics of most TE families in this species remains entirely unexplored. It is not clear whether the same population processes can account for the population behaviors of all TEs in Drosophila or whether, as has been suggested previously, different orders behave according to very different rules. In this work, we analyzed population frequencies for a large number of individual TEs (755 TEs) in five North American and one sub-Saharan African D. melanogaster populations (75 strains in total). These TEs have been annotated in the reference D. melanogaster euchromatic genome and have been sampled from all three major orders (non-LTR, LTR, and TIR) and from all families with more than 20 TE copies (55 families in total). We find strong evidence that TEs in Drosophila across all orders and families are subject to purifying selection at the level of ectopic recombination. We showed that strength of this selection varies predictably with recombination rate, length of individual TEs, and copy number and length of other TEs in the same family. Importantly, these rules do not appear to vary across orders. Finally, we built a statistical model that considered only individual TE-level (such as the TE length) and family-level properties (such as the copy number) and were able to explain more than 40% of the variation in TE frequencies in D. melanogaster.
Figures



Similar articles
-
Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila.Mol Biol Evol. 2003 Jun;20(6):880-92. doi: 10.1093/molbev/msg102. Epub 2003 Apr 25. Mol Biol Evol. 2003. PMID: 12716993
-
Paucity of chimeric gene-transposable element transcripts in the Drosophila melanogaster genome.BMC Biol. 2005 Nov 12;3:24. doi: 10.1186/1741-7007-3-24. BMC Biol. 2005. PMID: 16283942 Free PMC article.
-
Abundance and distribution of transposable elements in two Drosophila QTL mapping resources.Mol Biol Evol. 2013 Oct;30(10):2311-27. doi: 10.1093/molbev/mst129. Epub 2013 Jul 24. Mol Biol Evol. 2013. PMID: 23883524 Free PMC article.
-
Population genomics of transposable elements in Drosophila.Annu Rev Genet. 2014;48:561-81. doi: 10.1146/annurev-genet-120213-092359. Epub 2014 Oct 1. Annu Rev Genet. 2014. PMID: 25292358 Review.
-
Transposable elements in natural populations of Drosophila melanogaster.Philos Trans R Soc Lond B Biol Sci. 2010 Apr 27;365(1544):1219-28. doi: 10.1098/rstb.2009.0318. Philos Trans R Soc Lond B Biol Sci. 2010. PMID: 20308097 Free PMC article. Review.
Cited by
-
Drosophila errantiviruses.Mob Genet Elements. 2012 Jan 1;2(1):36-45. doi: 10.4161/mge.19234. Mob Genet Elements. 2012. PMID: 22754751 Free PMC article.
-
Disentangling the determinants of transposable elements dynamics in vertebrate genomes using empirical evidences and simulations.PLoS Genet. 2020 Oct 5;16(10):e1009082. doi: 10.1371/journal.pgen.1009082. eCollection 2020 Oct. PLoS Genet. 2020. PMID: 33017388 Free PMC article.
-
Lizards and LINEs: selection and demography affect the fate of L1 retrotransposons in the genome of the green anole (Anolis carolinensis).Genome Biol Evol. 2013;5(9):1754-68. doi: 10.1093/gbe/evt133. Genome Biol Evol. 2013. PMID: 24013105 Free PMC article.
-
Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects.BMC Evol Biol. 2019 Jan 9;19(1):11. doi: 10.1186/s12862-018-1324-9. BMC Evol Biol. 2019. PMID: 30626321 Free PMC article.
-
Transposable elements in Drosophila.Mob DNA. 2020 Jul 3;11:23. doi: 10.1186/s13100-020-00213-z. eCollection 2020. Mob DNA. 2020. PMID: 32636946 Free PMC article. Review.
References
-
- Akaike H. A new look at statistical model identification. IEEE Trans Automat Contr. 1974;19:716–723.
-
- Aminetzach YT, Macpherson JM, Petrov DA. Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila. Science. 2005;309:764–767. - PubMed
-
- Aravin AA, Naumova NM, Tulin AV, Vagin VV, Rozovsky YM, Gvozdev VA. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol. 2001;11:1017–1027. - PubMed
-
- Ashburner M, Golic KG, Hawley RS. Drosophila: a laboratory handbook. New York: Cold Spring Harbour Laboratoy Press; 2005.
-
- Bartolome C, Maside X, Charlesworth B. On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Mol Biol Evol. 2002;19:926–937. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases