In vitro effect of qnrA1, qnrB1, and qnrS1 genes on fluoroquinolone activity against isogenic Escherichia coli isolates with mutations in gyrA and parC
- PMID: 21173174
- PMCID: PMC3067081
- DOI: 10.1128/AAC.00927-10
In vitro effect of qnrA1, qnrB1, and qnrS1 genes on fluoroquinolone activity against isogenic Escherichia coli isolates with mutations in gyrA and parC
Abstract
This article provides an analysis of the in vitro effect of qnrA1, qnrB1, and qnrS1 genes, combined with quinolone-resistant Ser83Leu substitutions in GyrA and/or Ser80Arg in ParC, on fluoroquinolone (FQ) resistance in isogenic Escherichia coli strains. The association of Ser83Leu substitution in GyrA, Ser80Arg substitution in ParC, and qnr gene expression increased the MIC of ciprofloxacin to 2 μg/ml. qnr genes present in E. coli that harbored a Ser83Leu substitution in GyrA increased mutant prevention concentration (MPC) values to 8 to 32 μg/ml. qnr gene expression in E. coli may play an important role in selecting for one-step FQ-resistant mutants.
Figures
References
-
- Allou, N., E. Cambau, L. Massias, F. Chau, and B. Fantin. 2009. Impact of low-level resistance to fluoroquinolones due to qnrA1 and qnrS1 genes or a gyrA mutation on ciprofloxacin bactericidal activity in a murine model of Escherichia coli urinary tract infection. Antimicrob. Agents Chemother. 53:4292-4297. - PMC - PubMed
-
- Clinical and Laboratory Standards Institute. 2010. Performance standards for antimicrobial susceptibility testing: nineteenth informational supplement M100-S20. CLSI, Wayne, PA.
-
- de Toro, M., et al. 2010. In vivo selection of aac(6′)-Ib-cr and mutations in the gyrA gene in a clinical qnrS1-positive Salmonella enterica serovar Typhimurium DT104B strain recovered after fluoroquinolone treatment. J. Antimicrob. Chemother. 65:1945-1949. - PubMed
-
- Drlica, K., and X. Zhao. 2007. Mutant selection window hypothesis updated. Clin. Infect. Dis. 44:681-688. - PubMed