Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan 26;133(3):582-94.
doi: 10.1021/ja1084783. Epub 2010 Dec 21.

Dissection of complex molecular recognition interfaces

Affiliations

Dissection of complex molecular recognition interfaces

Christopher A Hunter et al. J Am Chem Soc. .

Abstract

The synthesis of a family of zinc porphyrins and pyridine ligands equipped with peripheral H-bonding functionality has provided access to a wide range of closely related supramolecular complexes featuring between zero and four intramolecular H-bonds. An automated UV/vis titration system was used to characterize 120 different complexes, and these data were used to construct a large of number of different chemical double mutant cycles to quantify the intramolecular H-bonding interactions. The results probe the quantitative structure-activity relationship that governs cooperativity in the assembly of complex molecular recognition interfaces. Specifically, variations in the chemical structures of the complexes have allowed us to change the supramolecular architecture, conformational flexibility, geometric complementarity, the number and nature of the H-bond interactions, and the overall stability of the complex. The free energy contributions from individual H-bonds are additive, and there is remarkably little variation with architecture in the effective molarity for the formation of intramolecular interactions. Intramolecular H-bonds are not observed in complexes where they are geometrically impossible, but there are no cases where excellent geometric complementarity leads to very high affinities. Similarly, changes in conformational flexibility seem to have limited impact on the values of effective molarity (EM). The major variation that was found for all of the 48 intramolecular interactions that were examined using double mutant cycles is that the values of EM for intramolecular carboxylate ester-phenol H-bonds (200 mM) are an order of magnitude larger than those found for phosphonate diester-phenol H-bonds (30 mM). The corresponding intermolecular phosphonate diester-phenol H-bonds are 2 orders of magnitude more stable than carboxylate ester-phenol H-bonds, and the large differences in EM may be due to some kind of compensation effect, where the stronger H-bond is harder to make, because it imposes tighter constraints on the geometry of the complex.

PubMed Disclaimer

LinkOut - more resources