Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec 23;468(7327):1084-7.
doi: 10.1038/nature09682.

Spin-orbit qubit in a semiconductor nanowire

Affiliations

Spin-orbit qubit in a semiconductor nanowire

S Nadj-Perge et al. Nature. .

Abstract

Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations. Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.

PubMed Disclaimer

Comment in

References

    1. Science. 2008 Apr 18;320(5874):349-52 - PubMed
    1. Nature. 2006 Aug 17;442(7104):766-71 - PubMed
    1. Nature. 2008 Nov 13;456(7219):218-21 - PubMed
    1. Phys Rev Lett. 2003 Sep 19;91(12):126405 - PubMed
    1. Nano Lett. 2009 May;9(5):1989-93 - PubMed

Publication types

LinkOut - more resources