Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1990 Oct;99(4):1157-76.
doi: 10.1016/0016-5085(90)90640-m.

The molecular basis of enzyme secretion

Affiliations
Review

The molecular basis of enzyme secretion

R Bruzzone. Gastroenterology. 1990 Oct.

Abstract

Acinar cells are one of the best studied models of exocytotic secretion. A number of different hormones and neurotransmitters interact with specific membrane receptors, and it is commonly held that pancreatic secretagogues stimulate enzyme release via the elevation of either cytosolic free Ca2+ or cellular cyclic adenosine monophosphate. The discovery of the pivotal role played by phospholipid metabolism in the chain of events leading to secretion, together with the introduction of sensitive techniques to monitor cytosolic free Ca2+, has generated a series of studies that have challenged this classical model. Thus, several observations in pancreatic acini as well as other cell types have argued against the notion that a generalized increase in cytosolic free Ca2+ represents a sufficient and necessary stimulus for exocytosis in nonexcitable cells. Furthermore, the demonstration that a single agonist activates multiple transduction pathways has served to refute the schematic view that receptor agonists activate only one second messenger system. The aim of this article is to review the recent advances in understanding the molecular and cellular mechanisms of signal transduction, with particular emphasis on the inositol lipid pathway, and to integrate this information into a new working model of enzyme secretion from acinar cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources