Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2010 Dec 29:10:693.
doi: 10.1186/1471-2407-10-693.

Meta-analysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions

Affiliations
Meta-Analysis

Meta-analysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions

Xin Chen et al. BMC Cancer. .

Abstract

Background: To determine, in a meta-analysis, the diagnostic performance of quantitative diffusion-weighted (DW) MR imaging in patients with breast lesions.

Methods: English and Chinese studies published prior to June 2009 to assess the diagnostic performance of quantitative DWI in patients with breast lesions were reviewed and summarized with reference to the inclusion and exclusion criteria. Methodological quality was assessed by using the quality assessment of diagnostic studies (QUADAS) instrument. Publication bias analysis was performed by using Comprehensive Meta-analysis version 2. Meta-Disc version 1.4 was used to describe primary results and explore homogeneity by Chi-square test and inconsistency index; to explore threshold effect by receiver operator characteristic (ROC) space and Spearman correlation coefficient; and to pool weighted sensitivity and specificity by fixed or random effect model. A summary ROC (sROC) curve was constructed to calculate the area under the curve (AUC).

Results: Of 65 eligible studies, 13 with 615 malignant and 349 benign lesions were included in the original meta-analysis, among which heterogeneity arising from factors other than threshold effect and publication bias was explored. Methodological quality was moderate. The pooled weighted sensitivity and specificity with corresponding 95% confidence interval (CI) in one homogenous subgroup of studies using maximum b = 1000 s/mm2 were 0.84 (0.80, 0.87) and 0.84 (0.79, 0.88) respectively. AUC of sROC was 0.9085. Sensitivity analysis demonstrated that the pooled estimates were stable and reliable.

Conclusions: Quantitative DWI has a higher specificity to differentiate between benign and malignant breast lesions compared to that of contrast-enhanced MRI. However, large scale randomized control trials (RCTs) are necessary to assess its clinical value because of disunified diffusion gradient factor b and diagnosis threshold.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Forest plots of sensitivity and specificity, with corresponding 95% CIs from all eligible studies.
Figure 2
Figure 2
Sensitivity and 1-specficity plotted in receiver operating characteristic space for individual studies.
Figure 3
Figure 3
Funnel plot of eligible studies. Note: White flakes represent published articles, and red flake represents possibly missed article. White and red rhombuses represent actual and theoretical combined effect size respectively.
Figure 4
Figure 4
Forest plots of sensitivity and specificity, with corresponding 95% CIs from studies using maximum b = 1000 s/mm2.
Figure 5
Figure 5
SROC curve for studies using maximum b = 1000 s/mm2.

References

    1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108. doi: 10.3322/canjclin.55.2.74. - DOI - PubMed
    1. Boetes C, Veltman J, van Die L, Bult P, Wobbes T, Barentsz JO. The role of MRI in invasive lobular carcinoma. Breast Cancer Res Treat. 2004;86:31–37. doi: 10.1023/B:BREA.0000032921.10481.dc. - DOI - PubMed
    1. Kriege M, Brekelmans CT, Boetes C, Besnard PE, Zonderland HM, Obdeijn IM, Manoliu RA, Kok T, Peterse H, Tilanus-Linthorst MM, Muller SH, Meijer S, Oosterwijk JC, Beex LV, Tollenaar RA, de Koning HJ, Rutgers EJ, Klijn JG. Magnetic Resonance Imaging Screening Study Group. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med. 2004;351:427–437. doi: 10.1056/NEJMoa031759. - DOI - PubMed
    1. Schnall MD, Blume J, Bluemke DA, DeAngelis GA, DeBruhl N, Harms S, Heywang-Köbrunner SH, Hylton N, Kuhl CK, Pisano ED, Causer P, Schnitt SJ, Thickman D, Stelling CB, Weatherall PT, Lehman C, Gatsonis CA. Diagnostic architectural and dynamic features at breast MR imaging: multicenter study. Radiology. 2006;238:42–53. doi: 10.1148/radiol.2381042117. - DOI - PubMed
    1. Van Goethem M, Tjalma W, Schelfout K, Verslegers I, Biltjes I, Parizel P. Magnetic resonance imaging in breast cancer. Eur J Surg Oncol. 2006;32:901–910. doi: 10.1016/j.ejso.2006.06.009. - DOI - PubMed

Publication types