Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec 31:11:65.
doi: 10.1186/1471-2172-11-65.

Intranasal immunization with plasmid DNA encoding spike protein of SARS-coronavirus/polyethylenimine nanoparticles elicits antigen-specific humoral and cellular immune responses

Affiliations

Intranasal immunization with plasmid DNA encoding spike protein of SARS-coronavirus/polyethylenimine nanoparticles elicits antigen-specific humoral and cellular immune responses

Byoung-Shik Shim et al. BMC Immunol. .

Abstract

Background: Immunization with the spike protein (S) of severe acute respiratory syndrome (SARS)-coronavirus (CoV) in mice is known to produce neutralizing antibodies and to prevent the infection caused by SARS-CoV. Polyethylenimine 25K (PEI) is a cationic polymer which effectively delivers the plasmid DNA.

Results: In the present study, the immune responses of BALB/c mice immunized via intranasal (i.n.) route with SARS DNA vaccine (pci-S) in a PEI/pci-S complex form have been examined. The size of the PEI/pci-S nanoparticles appeared to be around 194.7 ± 99.3 nm, and the expression of the S mRNA and protein was confirmed in vitro. The mice immunized with i.n. PEI/pci-S nanoparticles produced significantly (P < 0.05) higher S-specific IgG1 in the sera and mucosal secretory IgA in the lung wash than those in mice treated with pci-S alone. Compared to those in mice challenged with pci-S alone, the number of B220+ cells found in PEI/pci-S vaccinated mice was elevated. Co-stimulatory molecules (CD80 and CD86) and class II major histocompatibility complex molecules (I-Ad) were increased on CD11c+ dendritic cells in cervical lymph node from the mice after PEI/pci-S vaccination. The percentage of IFN-γ-, TNF-α- and IL-2-producing cells were higher in PEI/pci-S vaccinated mice than in control mice.

Conclusion: These results showed that intranasal immunization with PEI/pci-S nanoparticles induce antigen specific humoral and cellular immune responses.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Characterization of SARS-CoV S DNA vaccine (pci-S)-PEI complexes. (A) Transmission electron micrographic image of PEI/pci-S complexes at N/P ratio 10. Scale bar represents 0.5 μm. (B) Size distribution of complexes prepared at N/P ratio 10. (C) The cell uptake of PEI/pci-S complexes was observed by confocal laser scanning microscope. Upper left, intracellular distribution of rhodamine-labeled PEI/pci-S (red). Upper right, cell nuclei by DAPI staining. Lower left, differential interference images of RAW 264.7 cells. Lower right, overlapping image of nuclei and rhodamine-labeled PEI/pci-S. (D) Expression of S mRNA in RAW 264.7 cells transfected with PEI/pci-S complexes was detected by RT-PCR. (E) S protein in RAW 264.7 cells with PEI/pci-S complexes was detected by Western blot.
Figure 2
Figure 2
SARS-CoV S protein-specific humoral and mucosal immune responses in BALB/c mice intranasally immunized with PEI/pci-S complexes. The samples were collected on day 7 after the last immunization. Induction of (A) S-specific IgG subclasses in serum and (B) S-specific IgA in various mucosal samples were determined by ELISA. The results were expressed as means ± SEM for the group (n = 5 to 8). Significant differences compared with pci-S group were expressed as *P < 0.05 and **P < 0.01, respectively. (C) Proliferation activity of B220+ cells from spleen of mice immunized with PEI/pci-S complexes. Bar and number in each panel present the percentage of proliferated cells.
Figure 3
Figure 3
Expression of cell surface molecules, CD80, CD83, CD86, CCR7 and MHC class II, on CD11c+ cells in cervical lymph nodes from mice immunized with PEI/pci-S complexes. BALB/c mice were immunized with PBS, pci-mock, pci-S, or PEI/pci-S complexes and then cell surface molecules on CD11c+ cells from cervical lymph nodes were analyzed on day 3 after the last immunization. (A) The expressions of major cell surface molecules, CD80, CD83, CD86, CCR7, and MHC class II (I-Ad) on CD11c+ DC were determined by flow cytometry. Data were expressed as the mean value of mean fluorescence intensity ± SD. Significant differences compared with pci-S group were expressed as *P < 0.05. (B) Expression of MHC class II molecules was represented by histogram.
Figure 4
Figure 4
Effector CD4+ and CD8+ T cell responses in BALB/c mice immunized with PEI/pci-S complexes. Multi-intracellular cytokine staining for IL-17, IFN-γ, TNF-α and IL-2 was performed on (A) CD4+ and (B) CD8+ T cells after in vitro re-stimulation with SARS peptide. SARS S-specific CD4+ T cells from lung were recovered on day 6 after the last immunization. ND indicates not detectable. Data were expressed as the mean value of mean fluorescence intensity ± SEM. Significant differences compared with pci-S group were expressed as *P < 0.01. (C) The results showed representative example of flow cytometry analysis.

References

    1. Zhong N, Zheng B, Li Y, Poon L, Xie Z, Chan K, Li P, Tan S, Chang Q, Xie J. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China. February Lancet. 2003;362:1353–1358. doi: 10.1016/S0140-6736(03)14630-2. - DOI - PMC - PubMed
    1. Rota P, Oberste M, Monroe S, Nix W, Campagnoli R, Icenogle J, Penaranda S, Bankamp B, Maher K, Chen M. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300:1394–1399. doi: 10.1126/science.1085952. - DOI - PubMed
    1. Li W, Moore M, Vasilieva N, Sui J, Wong S, Berne M, Somasundaran M, Sullivan J, Luzuriaga K, Greenough T. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454. doi: 10.1038/nature02145. - DOI - PMC - PubMed
    1. Rice J, Ottensmeier C, Stevenson F. DNA vaccines: precision tools for activating effective immunity against cancer. Nature Reviews Cancer. 2008;8:108–120. doi: 10.1038/nrc2326. - DOI - PubMed
    1. Wang B, Ugen K, Srikantan V, Agadjanyan M, Dang K, Refaeli Y, Sato A, Boyer J, Williams W, Weiner D. Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences. 1993;90:4156–4160. doi: 10.1073/pnas.90.9.4156. - DOI - PMC - PubMed

Publication types

MeSH terms