Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Jan 1;3(2):662-79.
doi: 10.2741/s179.

Studies of first phase insulin secretion using imposed plasma membrane depolarization

Affiliations
Free article
Review

Studies of first phase insulin secretion using imposed plasma membrane depolarization

Michael Willenborg et al. Front Biosci (Schol Ed). .
Free article

Abstract

The first phase of glucose-induced insulin secretion is generally regarded to represent the release of a finite pool of secretion-ready granules, triggered by the depolarization-induced influx of Ca2+ through L-type Ca2+ channels. However, the experimental induction of insulin secretion by imposed plasma membrane depolarization may be more complicated than currently appreciated. A comparison of the effects of high K+ concentrations with those of KATP channel closure, which initiates the electrical activity of the beta cell, suggests that 40 mM K+, which is a popular tool to produce a first phase-like secretion, is of supraphysiological strength, whereas the 20 mV depolarization by 15 mM K+ is nearly inefficient. A major conceptual problem consists in the occurrence of action potentials during KATP channel closure, but not during K+ depolarization, which leaves the K+ channel conductance unchanged. Recent observations suggest that the signal function of the endogenously generated depolarization is not homogeneous, but may rather differ between the component mainly determined by KATP channel closure (slow waves) and that mainly determined by Ca2+ influx (action potentials).

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources