Desbutyl-lumefantrine is a metabolite of lumefantrine with potent in vitro antimalarial activity that may influence artemether-lumefantrine treatment outcome
- PMID: 21199927
- PMCID: PMC3067122
- DOI: 10.1128/AAC.01312-10
Desbutyl-lumefantrine is a metabolite of lumefantrine with potent in vitro antimalarial activity that may influence artemether-lumefantrine treatment outcome
Abstract
Desbutyl-lumefantrine (DBL) is a metabolite of lumefantrine. Preliminary data from Plasmodium falciparum field isolates show greater antimalarial potency than, and synergy with, the parent compound and synergy with artemisinin. In the present study, the in vitro activity and interactions of DBL were assessed from tritium-labeled hypoxanthine uptake in cultures of the laboratory-adapted strains 3D7 (chloroquine sensitive) and W2mef (chloroquine resistant). The geometric mean 50% inhibitory concentrations (IC(50)s) for DBL against 3D7 and W2mef were 9.0 nM (95% confidence interval, 5.7 to 14.4 nM) and 9.5 nM (95% confidence interval, 7.5 to 11.9 nM), respectively, and those for lumefantrine were 65.2 nM (95% confidence interval, 42.3 to 100.8 nM) and 55.5 nM (95% confidence interval, 40.6 to 75.7 nM), respectively. An isobolographic analysis of DBL and lumefantrine combinations showed no interaction in either laboratory-adapted strain but mild synergy between DBL and dihydroartemisinin (sums of the fractional inhibitory concentrations of 0.92 [95% confidence interval, 0.87 to 0.98] and 0.94 [95% confidence interval, 0.90 to 0.99] for 3D7 and W2mef, respectively). Using a validated ultra-high-performance liquid chromatography-tandem mass spectrometry assay and 94 day 7 samples from a previously reported intervention trial, the mean plasma DBL was 31.9 nM (range, 1.3 to 123.1 nM). Mean plasma DBL concentrations were lower in children who failed artemether-lumefantrine treatment than in those with an adequate clinical and parasitological response (ACPR) (P = 0.053 versus P > 0.22 for plasma lumefantrine and the plasma lumefantrine-to-DBL ratio, respectively). DBL is more potent than the parent compound and mildly synergistic with dihydroartemisinin. These properties and the relationship between day 7 plasma concentrations and the ACPR suggest that it could be a useful alternative to lumefantrine as a part of artemisinin combination therapy.
Figures
References
-
- Alin, M. H., A. Bjorkman, and W. H. Wernsdorfer. 1999. Synergism of benflumetol and artemether in Plasmodium falciparum. Am. J. Trop. Med. Hyg. 61:439-445. - PubMed
-
- Berenbaum, M. C. 1978. A method for testing for synergy with any number of agents. J. Infect. Dis. 137:122-130. - PubMed
-
- Brueckner, R. P., W. K. Milhous, and C. J. Canfield. 1991. Quantitative isobolic analysis of antimalarial drug interactions. In Program and Abstract of the 40th Annual Meeting of the American Society of Tropical Medicine and Hygiene. Am. J. Trop. Med. Hyg. 45:190. - PubMed
-
- Canfield, C. J., M. Pudney, and W. E. Gutteridge. 1995. Interactions of atovaquone with other antimalarial drugs against Plasmodium falciparum in vitro. Exp. Parasitol. 80:373-381. - PubMed
-
- Chawira, A. N., and D. C. Warhurst. 1987. The effect of artemisinin combined with standard antimalarials against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum in vitro. J. Trop. Med. Hyg. 90:1-8. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
