Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Sep;104(2):535-42.
doi: 10.1007/s11060-010-0506-0. Epub 2011 Jan 4.

Cancer susceptibility variants and the risk of adult glioma in a US case-control study

Affiliations

Cancer susceptibility variants and the risk of adult glioma in a US case-control study

Kathleen M Egan et al. J Neurooncol. 2011 Sep.

Erratum in

  • J Neurooncol. 2011 Sep;104(2):543

Abstract

Malignant gliomas are the most common and deadly brain tumors. Although their etiology remains elusive, recent studies have narrowed the search for genetic loci that influence risk. We examined variants implicated in recent cancer genome-wide association studies (GWAS) for associations with glioma risk in a US case-control study. Cases were identified from neurosurgical and neuro-oncology clinics at major academic centers in the Southeastern US. Controls were identified from the community or were friends or other associates of cases. We examined a total of 191 susceptibility variants in genes identified in published cancer GWAS including glioma. A total of 639 glioma cases and 649 controls, all Caucasian, were included in analysis. Cases were enrolled a median of 1 month following diagnosis. Among glioma GWAS-identified variants, we detected associations in CDKN2B, RTEL1, TERT and PHLDB1, whereas we did not find overall associations for CCDC26. Results showed clear heterogeneity according to histologic subtypes of glioma, with TERT and RTEL variants a feature of astrocytic tumors and glioblastoma (GBM), CCDC26 and PHLDB1 variants a feature of astrocytic and oligodendroglial tumors, and CDKN2B variants most prominent in GBM. No examined variant in other cancer GWAS was found to be related to risk after adjustment for multiple comparisons. These results suggest that GWAS-identified SNPs in glioma mark different molecular etiologies in glioma. Stratification by broad histological subgroups may shed light on molecular mechanisms and assist in the discovery of novel loci in future studies of genetic susceptibility variants in glioma.

PubMed Disclaimer

References

    1. Gu J, Liu Y, Kyritsis AP, Bondy ML. Molecular epidemiology of primary brain tumors. Neurotherapeutics. 2009;6(3):427–435. - PMC - PubMed
    1. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA. 2009;106(23):9362–9367. - PMC - PubMed
    1. Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, Ballman KV, Berger M, Buckner JC, Chang S, Giannini C, Halder C, Kollmeyer TM, Kosel ML, LaChance DH, McCoy L, O'Neill BP, Patoka J, Pico AR, Prados M, Quesenberry C, Rice T, Rynearson AL, Smirnov I, Tihan T, Wiemels J, Yang P, Wiencke JK. Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet. 2009;41(8):905–908. - PMC - PubMed
    1. Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, Simon M, Marie Y, Boisselier B, Delattre JY, Delattre JY, Hoang-Xuan K, El Hallani S, Idbaih A, Zelenika D, Andersson U, Henriksson R, Bergenheim AT, Feychting M, Lönn S, Ahlbom A, Schramm J, Linnebank M, Hemminki K, Kumar R, Hepworth SJ, Price A, Armstrong G, Liu Y, Gu X, Yu R, Lau C, Schoemaker M, Muir K, Swerdlow A, Lathrop M, Bondy M, Houlston RS. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009;41(8):899–904. - PMC - PubMed
    1. Cardis E, Richardson L, Deltour I, Armstrong B, Feychting M, Johansen C, Kilkenny M, McKinney P, Modan B, Sadetzki S, Schüz J, Swerdlow A, Vrijheid M, Auvinen A, Berg G, Blettner M, Bowman J, Brown J, Chetrit A, Christensen HC, Cook A, Hepworth S, Giles G, Hours M, Iavarone I, Jarus-Hakak A, Klaeboe L, Krewski D, Lagorio S, Lönn S, Mann S, McBride M, Muir K, Nadon L, Parent ME, Pearce N, Salminen T, Schoemaker M, Schlehofer B, Siemiatycki J, Taki M, Takebayashi T, Tynes T, van Tongeren M, Vecchia P, Wiart J, Woodward A, Yamaguchi N. The INTERPHONE study: design, epidemiological methods, and description of the study population. Eur J Epidemiol. 2007;22(9):647–664. - PubMed

Publication types