Engineering of a genome-reduced host: practical application of synthetic biology in the overproduction of desired secondary metabolites
- PMID: 21203934
- PMCID: PMC4875272
- DOI: 10.1007/s13238-010-0073-3
Engineering of a genome-reduced host: practical application of synthetic biology in the overproduction of desired secondary metabolites
Abstract
Synthetic biology aims to design and build new biological systems with desirable properties, providing the foundation for the biosynthesis of secondary metabolites. The most prominent representation of synthetic biology has been used in microbial engineering by recombinant DNA technology. However, there are advantages of using a deleted host, and therefore an increasing number of biotechnology studies follow similar strategies to dissect cellular networks and construct genome-reduced microbes. This review will give an overview of the strategies used for constructing and engineering reduced-genome factories by synthetic biology to improve production of secondary metabolites.
Similar articles
-
Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism.Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2646-51. doi: 10.1073/pnas.0914833107. Epub 2010 Jan 25. Proc Natl Acad Sci U S A. 2010. PMID: 20133795 Free PMC article.
-
Synthetic Biology Tools for Novel Secondary Metabolite Discovery in Streptomyces.J Microbiol Biotechnol. 2019 May 28;29(5):667-686. doi: 10.4014/jmb.1904.04015. J Microbiol Biotechnol. 2019. PMID: 31091862 Review.
-
Synthetic Inducible Regulatory Systems Optimized for the Modulation of Secondary Metabolite Production in Streptomyces.ACS Synth Biol. 2019 Mar 15;8(3):577-586. doi: 10.1021/acssynbio.9b00001. Epub 2019 Mar 4. ACS Synth Biol. 2019. PMID: 30807691
-
Engineering plant metabolism into microbes: from systems biology to synthetic biology.Curr Opin Biotechnol. 2013 Apr;24(2):291-9. doi: 10.1016/j.copbio.2012.08.010. Epub 2012 Sep 15. Curr Opin Biotechnol. 2013. PMID: 22985679 Review.
-
Reevaluating synthesis by biology.Curr Opin Microbiol. 2010 Jun;13(3):371-6. doi: 10.1016/j.mib.2010.04.002. Epub 2010 May 4. Curr Opin Microbiol. 2010. PMID: 20447859 Review.
Cited by
-
Efficient Large-Scale and Scarless Genome Engineering Enables the Construction and Screening of Bacillus subtilis Biofuel Overproducers.Int J Mol Sci. 2022 Apr 27;23(9):4853. doi: 10.3390/ijms23094853. Int J Mol Sci. 2022. PMID: 35563243 Free PMC article.
-
Low-mutation-rate, reduced-genome Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs.Microb Cell Fact. 2012 Jan 20;11:11. doi: 10.1186/1475-2859-11-11. Microb Cell Fact. 2012. PMID: 22264280 Free PMC article.
-
Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives.J Ind Microbiol Biotechnol. 2018 Aug;45(8):719-734. doi: 10.1007/s10295-018-2030-8. Epub 2018 Apr 13. J Ind Microbiol Biotechnol. 2018. PMID: 29654382 Review.
-
Engineering and modification of microbial chassis for systems and synthetic biology.Synth Syst Biotechnol. 2018 Dec 11;4(1):25-33. doi: 10.1016/j.synbio.2018.12.001. eCollection 2019 Mar. Synth Syst Biotechnol. 2018. PMID: 30560208 Free PMC article. Review.
-
Deletion of genomic islands in the Pseudomonas putida KT2440 genome can create an optimal chassis for synthetic biology applications.Microb Cell Fact. 2020 Mar 18;19(1):70. doi: 10.1186/s12934-020-01329-w. Microb Cell Fact. 2020. PMID: 32188438 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources