Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb 9;133(5):1282-5.
doi: 10.1021/ja110103p. Epub 2011 Jan 4.

Formaldehyde--a rapid and reversible inhibitor of hydrogen production by [FeFe]-hydrogenases

Affiliations

Formaldehyde--a rapid and reversible inhibitor of hydrogen production by [FeFe]-hydrogenases

Annemarie F Wait et al. J Am Chem Soc. .

Abstract

Dihydrogen (H(2)) production by [FeFe]-hydrogenases is strongly inhibited by formaldehyde (methanal) in a reaction that is rapid, reversible, and specific to this type of hydrogenase. This discovery, using three [FeFe]-hydrogenases that are homologous about the active site but otherwise structurally distinct, was made by protein film electrochemistry, which measures the activity (as electrical current) of enzymes immobilized on an electrode; importantly, the inhibitor can be removed after addition. Formaldehyde causes rapid loss of proton reduction activity which is restored when the solution is exchanged. Inhibition is confirmed by conventional solution assays. The effect depends strongly on the direction of catalysis: inhibition of H(2) oxidation is much weaker than for H(2) production, and formaldehyde also protects against CO and O(2) inactivation. By contrast, inhibition of [NiFe]-hydrogenases is weak. The results strongly suggest that formaldehyde binds at, or close to, the active site of [FeFe]-hydrogenases at a site unique to this class of enzyme--highly conserved lysine and cysteine residues, the bridgehead atom of the dithiolate ligand, or the reduced Fe(d) that is the focal center of catalysis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources