Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec 27;2(12):389-94.
doi: 10.4240/wjgs.v2.i12.389.

Small for size syndrome following living donor and split liver transplantation

Affiliations

Small for size syndrome following living donor and split liver transplantation

Hector Daniel Gonzalez et al. World J Gastrointest Surg. .

Abstract

The field of liver transplantation is limited by the availability of donor organs. The use of living donor and split cadaveric grafts is one potential method of expanding the donor pool. However, primary graft dysfunction can result from the use of partial livers despite the absence of other causes such as vascular obstruction or sepsis. This increasingly recognised phenomenon is termed "Small-for-size syndrome" (SFSS). Studies in animal models and humans have suggested portal hyperperfusion of the graft combined with poor venous outflow and reduced arterial flow might cause sinusoidal congestion and endothelial dysfunction. Graft related factors such as graft to recipient body weight ratio < 0.8, impaired venous outflow, steatosis > 30% and prolonged warm/cold ischemia time are positively predictive of SFSS. Donor related factors include deranged liver function tests and prolonged intensive care unit stay greater than five days. Child-Pugh grade C recipients are at relatively greater risk of developing SFSS. Surgical approaches to prevent SFSS fall into two categories: those targeting portal hyperperfusion by reducing inflow to the graft, including splenic artery modulation and portacaval shunts; and those aiming to relieve parenchymal congestion. This review aims to examine the controversial diagnosis of SFSS, including current strategies to predict and prevent its occurrence. We will also consider whether such interventions could jeopardize the graft by compromising regeneration.

Keywords: Hepatic veins; Hypertension; Liver regeneration; Liver transplantation; Living donors; Portacaval shunt; Portal; Splenic artery; Surgical.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Available from: http://www.eltr.org.
    1. Dahm F, Georgiev P, Clavien PA. Small-for-size syndrome after partial liver transplantation: definition, mechanisms of disease and clinical implications. Am J Transplant. 2005;5:2605–2610. - PubMed
    1. Kiuchi T, Tanaka K, Ito T, Oike F, Ogura Y, Fujimoto Y, Ogawa K. Small-for-size graft in living donor liver transplantation: how far should we go? Liver Transpl. 2003;9:S29–S35. - PubMed
    1. Yagi S, Iida T, Taniguchi K, Hori T, Hamada T, Fujii K, Mizuno S, Uemoto S. Impact of portal venous pressure on regeneration and graft damage after living-donor liver transplantation. Liver Transpl. 2005;11:68–75. - PubMed
    1. Zhuang ZG, Qian LJ, Wang BX, Zhou Y, Li QG, Xu JR, Cheng YF. Computed tomography perfusion in living donor liver transplantation: an initial study of normal hemodynamic changes in liver grafts. Clin Transplant. 2009;23:692–699. - PubMed