Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Feb 23;18(2):R15-27.
doi: 10.1530/ERC-10-0220. Print 2011 Apr.

Transcriptome analysis of adrenocortical cancers: from molecular classification to the identification of new treatments

Affiliations
Review

Transcriptome analysis of adrenocortical cancers: from molecular classification to the identification of new treatments

Bruno Ragazzon et al. Endocr Relat Cancer. .

Abstract

Transcriptome analysis has been successfully used to study the gene profile expression of adrenocortical tumors (ACT) for 7 years. The various studies reported to date have produced an abundance of new information on adrenocortical cancer (ACC), underlying the validity of this approach to study the molecular genetics and pathogenesis of these tumors. The gene expression profile of ACC clearly differs from that of benign adrenocortical adenomas (ACA). Interestingly, transcriptome analysis has the ability to establish a subclassification of ACC based on the gene expression profile. In particular, it is able to identify two groups of tumors with different outcomes (i.e. good prognosis and poor prognosis). This approach has been used to develop molecular markers for ACC diagnosis and prognostication. An IGF2 cluster of genes up-regulated in ACC has been identified. Transcriptome analysis has shown that, in comparison with ACA, IGF2 is indeed the gene most overexpressed in ACC. By contrast, genes associated with steroidogenesis are down-regulated in ACC. Genes controlling the cell cycle are dysregulated in ACC, and several are dramatically overexpressed. Analysis regarding the level of expression of Wnt/β-catenin and p53 signaling has shown alterations, in keeping with the known molecular somatic genetic defects of these pathways that are observed in ACC. This review summarizes the main findings of studies reporting ACC transcriptome analysis, demonstrating its power for ACT classification, and examines the resulting progress in understanding the pathogenesis of ACC. The potential for both ACC diagnosis and the identification of new therapeutic targets will be discussed.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources