Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb;96(2):310-5.
doi: 10.1002/jbm.b.31767. Epub 2010 Dec 17.

The effect of betacyclodextrin and hydroxypropyl betacyclodextrin incorporation into plasticized poly(vinyl chloride) on its compatibility with human U937 cells

Affiliations

The effect of betacyclodextrin and hydroxypropyl betacyclodextrin incorporation into plasticized poly(vinyl chloride) on its compatibility with human U937 cells

Susan M George et al. J Biomed Mater Res B Appl Biomater. 2011 Feb.

Abstract

Di (2-ethyl hexyl) phthalate (DEHP) is one of the main plasticizers used in poly(vinyl chloride) (PVC) medical devices and is currently the only one listed for use in the European Pharmacopoeia Monograph. It leaches out of PVC when the material is in contact with lipophilic media, for example, blood and certain nutritional feeds. Consequently, concerns have been expressed since in certain animal species, DEHP has been shown to exhibit both carcinogenic and reproductive toxic effects. Incorporation of beta cyclodextrin (BCD) and hydroxypropyl betacyclodectrin (HPBCD) into plasticized materials has been reported to decrease the leaching of DEHP. We have investigated whether this results in improved in vitro biocompatibility by measuring the responses of U937 cells to plasticized PVC in the presence and absence of added BCD or HPBCD. Growth and viability of the U937 cells, as well as tumor necrosis factor-α (TNF-α) production in contact with these materials revealed no significant difference between unmodified plasticized PVC materials and those containing BCD or HPBCD. Lipopolysaccharide (LPS) was used to elicit TNF-α production, and the response of cells to LPS in the presence of the PVC materials was evaluated. When PVC was modified by addition of HPBCD there was a significant reduction in the TNF-α production in response to LPS. Modification of plasticized PVC biomaterials by adding cyclodextrins did not significantly improve their biocompatibility. However, the HPBCD modified plasticized PVC materials caused a reduction in the production in TNF-α induced by LPS which may have implications for the inflammatory potential of these biomaterials.

PubMed Disclaimer

LinkOut - more resources