Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Apr;119(4):559-65.
doi: 10.1289/ehp.1002653. Epub 2011 Jan 7.

Personal exposures to traffic-related air pollution and acute respiratory health among Bronx schoolchildren with asthma

Affiliations

Personal exposures to traffic-related air pollution and acute respiratory health among Bronx schoolchildren with asthma

Ariel Spira-Cohen et al. Environ Health Perspect. 2011 Apr.

Erratum in

  • Environ Health Perspect. 2011 Apr;119(4):564

Abstract

Background: Previous studies have reported relationships between adverse respiratory health outcomes and residential proximity to traffic pollution, but have not shown this at a personal exposure level.

Objective: We compared, among inner-city children with asthma, the associations of adverse asthma outcome incidences with increased personal exposure to particulate matter mass ≤ 2.5 μm in aerodynamic diameter (PM(2.5)) air pollution versus the diesel-related carbonaceous fraction of PM2.5.

Methods: Daily 24-hr personal samples of PM(2.5), including the elemental carbon (EC) fraction, were collected for 40 fifth-grade children with asthma at four South Bronx schools (10 children per school) during approximately 1 month each. Spirometry and symptom scores were recorded several times daily during weekdays.

Results: We found elevated same-day relative risks of wheeze [1.45; 95% confidence interval (CI), 1.03-2.04)], shortness of breath (1.41; 95% CI, 1.01-1.99), and total symptoms (1.30; 95% CI, 1.04-1.62) with an increase in personal EC, but not with personal PM(2.5) mass. We found increased risk of cough, wheeze, and total symptoms with increased 1-day lag and 2-day average personal and school-site EC. We found no significant associations with school-site PM(2.5) mass or sulfur. The EC effect estimate was robust to addition of gaseous pollutants.

Conclusion: Adverse health associations were strongest with personal measures of EC exposure, suggesting that the diesel "soot" fraction of PM(2.5) is most responsible for pollution-related asthma exacerbations among children living near roadways. Studies that rely on exposure to PM mass may underestimate PM health impacts.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Relative risks (RR) (with 95% CIs) of cough (A), wheeze (B), shortness of breath (C), and total symptom (D) severity scores associated with the various personal and outdoor school-site particle and gas exposure measurements. Lag EC models included predicted Sunday values from subject-specific personal-school site EC regression coefficients [except for two subjects with outlying relationships with the school-site monitor (r < 0.1)]. Because of poor correlations of personal with school-site PM2.5, this was not feasible for PM2.5 models. Personal EC: n = 563 for the same day; n = 571 for lag 1 day; n = 516 for 2-day average. Personal PM2.5: n = 556 for the same day; n = 465 for lag 1-day; n = 419 for 2-day average. All school-site models: n = 625 for the same day; n = 617 for lag 1 day; n = 607 for 2-day average.
Figure 2
Figure 2
Relative risks (RR) (with 95% CIs) of cough (A), wheeze (B), shortness of breath (C), and total symptom (D) severity scores associated with the school-site integrated measurements of sulfur, EC, and PM2.5. Measurements were taken from 0700 hr to 1400 hr (start hour = 7) and from 1400 hours to 0700 hours (start hour = 2). Sulfur and PM2.5: n = 615 for 0700 hours to 1400 hours; n = 605 for 1400 hours to 0700 hours. EC: n = 635 for 0700 hours to 1400 hours; n = 625 for 1400 hours to 0700 hours. RR of total symptoms for 0700 hours to 1400 hours sulfur = 1.0 (95% CI, 0.99–1.00).

References

    1. Asher MI, Keil U, Anderson HR, Beasley R, Crane J, Martinez F, et al. International Study of Asthma and Allergies in Childhood (ISAAC): rationale and methods. Eur Respir J. 1995;8:463–491. - PubMed
    1. Bailey D, Alimadhi F. In: logit.mixed: mixed effects Poisson regression. Imai K, King G, Olivia Lau O, editors. Zelig: Everyone’s Statistical Software; 2007. [[accessed 6 March 2011]]. Available: http://gking.harvard.edu/zelig.
    1. Balmes JR, Earnest G, Katz PP, Yelin EH, Eisner MD, Chen H, et al. Exposure to traffic: lung function and health status in adults with asthma. J Allergy Clin Immunol. 2009;123((3)):626–631. - PMC - PubMed
    1. Bosson J, Barath S, Pourazar J, Behndig AF, Sandstrom T, Blomberg A, et al. Diesel exhaust exposure enhances the ozone-induced airway inflammation in healthy humans. Eur Respir J. 2008;31:1234–1240. - PubMed
    1. Brunekreef B, Janssen N, de Hartog J, Harssema H, Knape M, Van Vliet P. Air pollution from truck traffic and lung function in children living near motorways. Epidemiology. 1997;8:298–303. - PubMed

Publication types