Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Aug;69(2):700-9.
doi: 10.1152/jappl.1990.69.2.700.

Arterial chemoreceptor input to respiratory hypoglossal motoneurons

Affiliations

Arterial chemoreceptor input to respiratory hypoglossal motoneurons

S W Mifflin. J Appl Physiol (1985). 1990 Aug.

Abstract

To better understand the role of the arterial chemoreceptors in the regulation of upper airway patency at the level of the oropharynx, intracellular recordings were obtained from inspiratory hypoglossal motoneurons (IHMs), and the responses to selective activation of the carotid body chemoreceptors were examined. In pentobarbital-anesthetized, vagotomized, paralyzed, and artificially ventilated cats, chemoreceptor activation enhanced the inspiratory depolarization of membrane potential in 32 of 36 IHMs. This was manifested as an increase in either the amplitude (n = 13) or duration (n = 3) or an increase in both amplitude and duration (n = 16) of the inspiratory membrane potential depolarization. The amplitude and duration of the inspiratory membrane potential depolarization increased 98 +/- 15% (n = 29) and 78 +/- 13% (n = 19), respectively. Similar patterns of enhanced activity (increased duration and/or amplitude of membrane depolarization) were observed in five expiratory hypoglossal motoneurons (EHMs) after chemoreceptor activation. In 16 of the 32 IHMs, chemoreceptor activation also evoked changes in IHM membrane potential during expiration: enhanced post-inspiratory discharge (n = 6), expiratory depolarization/discharge (n = 6), and tonic depolarization/discharge, which persisted for several respiratory cycles (n = 4). The arterial chemoreceptors provide a powerful excitatory input to IHMs during both inspiration and expiration. This excitatory drive to IHMs and EHMs will aid in the maintenance of upper airway patency throughout the respiratory cycle during increases in end-tidal CO2.

PubMed Disclaimer

Publication types

LinkOut - more resources