Processivity errors of gene expression in Escherichia coli
- PMID: 2121997
- DOI: 10.1016/S0022-2836(05)80164-0
Processivity errors of gene expression in Escherichia coli
Abstract
Not all ribosomes that initiate translation of an mRNA sequence will successfully complete it and produce a full-length protein product. By comparing the amounts of lacZ monomer and lacZ dimer protein expressed from a plasmid in a strictly controlled assay, we calculate a dimer to monomer ratio of 0.76. We interpret this to mean that ribosomes have a 76% chance of completing the synthesis of a beta-galactosidase polypeptide. The remaining 24% of the initiated chains end in processivity accidents. For the wild-type, premature RNA polymerase termination is found to account for roughly one-third of the processivity accidents. For the hyperaccurate SmP mutant, we observe a processivity of 0.28, but the presence of streptomycin improves this to 0.50. Thus, the hyperaccuracy with respect to missense substitutions for this mutant is accompanied by a reduced processivity. Addition of streptomycin increase the first error class and reduces the second one. This finding is relevant to the optimization of ribosome function and the growth performance of ribosome mutants.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources