Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Nov 1;348(6296):80-2.
doi: 10.1038/348080a0.

Phosphorylation of the C terminus of Fos protein is required for transcriptional transrepression of the c-fos promoter

Affiliations

Phosphorylation of the C terminus of Fos protein is required for transcriptional transrepression of the c-fos promoter

R Ofir et al. Nature. .

Abstract

Proto-oncogene fos encodes a nuclear phosphoprotein of 380 amino acids that can modulate the transcription of other genes either by transactivation or by transrepression. The v-Fos protein (381 amino acids) shares the first 332 amino acids with the c-Fos protein (with five single amino-acid changes), but differs at the C terminus. We have previously reported that the c-Fos protein undergoes more extensive post-translational modification than v-Fos (refs 9, 10). The major modification of the c-Fos protein involves serine phosphoesterification of sites in the extreme C terminus. We therefore argued that modification of the C-terminal region of the c-Fos protein may be involved in its ability to transrepress transcription without compromising its ability to transactivate other genes. Here we show that mutant c-Fos protein which is hypophosphorylated at its C terminus is unable to repress transcription of the c-fos promoter following induction with serum or tetraphorbol acetate. The C-terminal phosphorylation-deficient mutant is, however, fully competent to activate transcription of promoters containing a phorbol response element. The requirement for phosphorylation can be offset by the introduction of a net negative charge in the C terminus of the Fos protein.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources