Reelin is required for class-specific retinogeniculate targeting
- PMID: 21228166
- PMCID: PMC3257181
- DOI: 10.1523/JNEUROSCI.4227-10.2011
Reelin is required for class-specific retinogeniculate targeting
Abstract
Development of visual system circuitry requires the formation of precise synaptic connections between neurons in the retina and brain. For example, axons from retinal ganglion cells (RGCs) form synapses onto neurons within subnuclei of the lateral geniculate nucleus (LGN) [i.e., the dorsal LGN (dLGN), ventral LGN (vLGN), and intergeniculate leaflet (IGL)]. Distinct classes of RGCs project to these subnuclei: the dLGN is innervated by image-forming RGCs, whereas the vLGN and IGL are innervated by non-image-forming RGCs. To explore potential mechanisms regulating class-specific LGN targeting, we sought to identify differentially expressed targeting molecules in these LGN subnuclei. One candidate targeting molecule enriched in the vLGN and IGL during retinogeniculate circuit formation was the extracellular matrix molecule reelin. Anterograde labeling of RGC axons in mutant mice lacking functional reelin (reln(rl/rl)) revealed reduced patterns of vLGN and IGL innervation and misrouted RGC axons in adjacent non-retino-recipient thalamic nuclei. Using genetic reporter mice, we further demonstrated that mistargeted axons were from non-image-forming, intrinsically photosensitive RGCs (ipRGCs). In contrast to mistargeted ipRGC axons, axons arising from image-forming RGCs and layer VI cortical neurons correctly targeted the dLGN in reln(rl/rl) mutants. Together, these data reveal that reelin is essential for the targeting of LGN subnuclei by functionally distinct classes of RGCs.
Figures
References
-
- Altman J, Bayer SA. Development of the rat thalamus: VI. The posterior lobule of the thalamic neuroepithelium and the time and site of origin and settling pattern of neurons of the lateral geniculate and lateral posterior nuclei. J Comp Neurol. 1989;284:581–601. - PubMed
-
- Baba K, Sakakibara S, Setsu T, Terashima T. The superficial layers of the superior colliculus are cytoarchitectually and myeloarchitectually disorganized in the reelin-deficient mouse, reeler. Brain Res. 2007;1140:205–215. - PubMed
-
- Benhayon D, Magdaleno S, Curran T. Binding of purified Reelin to ApoER2 and VLDLR mediates tyrosine phosphorylation of Disabled-1. Brain Res Mol Brain Res. 2003;112:33–45. - PubMed
-
- Bjartmar L, Huberman AD, Ullian EM, Rentería RC, Liu X, Xu W, Prezioso J, Susman MW, Stellwagen D, Stokes CC, Cho R, Worley P, Malenka RC, Ball S, Peachey NS, Copenhagen D, Chapman B, Nakamoto M, Barres BA, Perin MS. Neuronal pentraxins mediate synaptic refinement in the developing visual system. J Neurosci. 2006;26:6269–6281. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases