Thresholds for epidemic spreading in networks
- PMID: 21231361
- DOI: 10.1103/PhysRevLett.105.218701
Thresholds for epidemic spreading in networks
Abstract
We study the threshold of epidemic models in quenched networks with degree distribution given by a power-law. For the susceptible-infected-susceptible model the activity threshold λ(c) vanishes in the large size limit on any network whose maximum degree k(max) diverges with the system size, at odds with heterogeneous mean-field (HMF) theory. The vanishing of the threshold has nothing to do with the scale-free nature of the network but stems instead from the largest hub in the system being active for any spreading rate λ>1/√k(max) and playing the role of a self-sustained source that spreads the infection to the rest of the system. The susceptible-infected-removed model displays instead agreement with HMF theory and a finite threshold for scale-rich networks. We conjecture that on quenched scale-rich networks the threshold of generic epidemic models is vanishing or finite depending on the presence or absence of a steady state.
Similar articles
-
Activation thresholds in epidemic spreading with motile infectious agents on scale-free networks.Chaos. 2018 Dec;28(12):123112. doi: 10.1063/1.5050807. Chaos. 2018. PMID: 30599512
-
Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation.Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066105. doi: 10.1103/PhysRevE.69.066105. Epub 2004 Jun 2. Phys Rev E Stat Nonlin Soft Matter Phys. 2004. PMID: 15244665
-
Epidemic thresholds of the susceptible-infected-susceptible model on networks: a comparison of numerical and theoretical results.Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041125. doi: 10.1103/PhysRevE.86.041125. Epub 2012 Oct 15. Phys Rev E Stat Nonlin Soft Matter Phys. 2012. PMID: 23214547
-
Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks.Phys Rev Lett. 2013 Aug 9;111(6):068701. doi: 10.1103/PhysRevLett.111.068701. Epub 2013 Aug 7. Phys Rev Lett. 2013. PMID: 23971619
-
Modelling disease spread and control in networks: implications for plant sciences.New Phytol. 2007;174(2):279-297. doi: 10.1111/j.1469-8137.2007.02028.x. New Phytol. 2007. PMID: 17388891 Review.
Cited by
-
Identifying Important Nodes in Complex Networks Based on Node Propagation Entropy.Entropy (Basel). 2022 Feb 14;24(2):275. doi: 10.3390/e24020275. Entropy (Basel). 2022. PMID: 35205569 Free PMC article.
-
Simulating SIR processes on networks using weighted shortest paths.Sci Rep. 2018 Apr 26;8(1):6562. doi: 10.1038/s41598-018-24648-w. Sci Rep. 2018. PMID: 29700314 Free PMC article.
-
Targeted pandemic containment through identifying local contact network bottlenecks.PLoS Comput Biol. 2021 Aug 30;17(8):e1009351. doi: 10.1371/journal.pcbi.1009351. eCollection 2021 Aug. PLoS Comput Biol. 2021. PMID: 34460813 Free PMC article.
-
Impact of information diffusion on epidemic spreading in partially mapping two-layered time-varying networks.Nonlinear Dyn. 2021;105(4):3819-3833. doi: 10.1007/s11071-021-06784-7. Epub 2021 Aug 20. Nonlinear Dyn. 2021. PMID: 34429568 Free PMC article.
-
Iterative Neighbour-Information Gathering for Ranking Nodes in Complex Networks.Sci Rep. 2017 Jan 24;7:41321. doi: 10.1038/srep41321. Sci Rep. 2017. PMID: 28117424 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources