Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Nov 15;265(32):19405-8.

rap1B, a cAMP-dependent protein kinase substrate, associates with the platelet cytoskeleton

Affiliations
  • PMID: 2123187
Free article

rap1B, a cAMP-dependent protein kinase substrate, associates with the platelet cytoskeleton

T H Fischer et al. J Biol Chem. .
Free article

Abstract

rap1B is a member of the ras superfamily of low molecular weight GTP binding proteins which constitutes a focal point of GTP and cAMP signal transduction systems. Like other members of this superfamily, rap1B is membrane-associated in resting platelets, presumably through polyisoprenylation. The studies presented here were undertaken to determine the subcellular changes in rap1B localization during cell activation. Activated and unactivated platelets were fractionated by Triton X-100 lysis followed by differential centrifugation to obtain a 10,000 x g cytoskeleton fraction, a 100,000 x g membrane skeleton fraction, and a 100,000 x g supernatant fraction containing solubilized proteins. In unactivated platelets, rap1B was present in the 100,000 x g supernatant fraction. In contrast, in platelets activated with 1 unit/ml alpha-thrombin or with the calcium ionophore, A23187, rap1B was quantitatively recovered in the 10,000 x g cytoskeleton fraction. rap1B was absent from the 100,000 x g fraction containing the membrane skeleton and could not be detected in the 100,000 x g supernatant containing cytosolic proteins and solubilized membrane components. These results indicate that rap1B associates with the cytoskeleton during cell activation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources