Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 May;6(4):130-5.
doi: 10.1016/1050-1738(96)00035-7.

Expression and regulation of ryanodine receptor/calcium release channels

Affiliations

Expression and regulation of ryanodine receptor/calcium release channels

A R Marks. Trends Cardiovasc Med. 1996 May.

Abstract

Intracellular calcium release channels on the endoplasmic or sarcoplasmic reticula (ryanodine receptors, RyR, and inositol 1,4,5-trisphosphate receptors, IP(3)R) comprise a unique family of molecules that are structurally and functionally distinct from all other known ion channels. These channels play crucial roles in many cellular signaling pathways including excitation-contraction coupling, oocyte fertilization, hormone secretion, neurotransmitter release, and T lymphocyte activation. Three forms of RyR have been identified: RyR1 expressed predominantly in skeletal muscle, RyR2 in cardiac muscle, and RyR3 in the brain. The tetrameric structures of RyR1 and RyR2 are stabilized by a channel-associated protein, FKBP12. The immunosuppressant drugs FK506 and rapamycin inhibit the prolyl isomerase activity of FKBP12 and could cause cardiac dysfunction by inducing a Ca(2+) leak from the sarcoplasmic reticulum. RyR2 is downregulated and IP(3)R is upregulated during severe end-stage heart failure secondary to dilated cardiomyopathies in humans, suggesting that these channels may contribute to abnormalities in Ca(2+) homeostasis.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources