Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Mar 15;406(1-2):1-10.
doi: 10.1016/j.ijpharm.2010.12.040. Epub 2011 Jan 11.

Influence of particle size on regional lung deposition--what evidence is there?

Affiliations
Review

Influence of particle size on regional lung deposition--what evidence is there?

Thiago C Carvalho et al. Int J Pharm. .

Abstract

The understanding of deposition of particles in the respiratory tract is of great value to risk assessment of inhalation toxicology and to improve efficiency in drug delivery of inhalation therapies. There are three main basic mechanisms of particle deposition based primarily on particle size: inertial impaction, sedimentation and diffusion. The regional deposition in the lungs can be evaluated in regards to the aerodynamic particle size, in which particle density plays a significant role. In this review paper, we first introduce the available imaging techniques to confirm regional deposition of particles in the human respiratory tract, such as planar scintigraphy, single photon emission computed tomography (SPECT) and positron emission tomography (PET). These technologies have widely advanced and consequently benefited the understanding of deposition pattern, although there is a lack of lung dosimetry techniques to evaluate the deposition of nanoparticles. Subsequently, we present a comprehensive review summarizing the evidence available in the literature that confirms the deposition of smaller particles in the smaller airways as opposed to the larger airways.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances