Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Dec 5;265(34):20879-86.

Isolation of the GSY1 gene encoding yeast glycogen synthase and evidence for the existence of a second gene

Affiliations
  • PMID: 2123485
Free article
Comparative Study

Isolation of the GSY1 gene encoding yeast glycogen synthase and evidence for the existence of a second gene

I Farkas et al. J Biol Chem. .
Free article

Abstract

Glycogen synthase preparations from Saccharomyces cerevisiae contained two polypeptides of molecular weights 85,000 and 77,000. Oligonucleotides based on protein sequence were utilized to clone a S. cerevisiae glycogen synthase gene, GSY1. The gene would encode a protein of 707 residues, molecular mass 80,501 daltons, with 50% overall identity to mammalian muscle glycogen synthases. The amino-terminal sequence obtained from the 85,000-dalton species matched the NH2 terminus predicted by the GSY1 sequence. Disruption of the GSY1 gene resulted in a viable haploid with glycogen synthase activity, and purification of glycogen synthase from this mutant strain resulted in an enzyme that contained the 77,000-dalton polypeptide. Southern hybridization of genomic DNA using the GSY1 coding sequence as a probe revealed a second weakly hybridizing fragment, present also in the strain with the GSY1 gene disrupted. However, the sequences of several tryptic peptides derived from the 77,000-dalton polypeptide were identical or similar to the sequence predicted by the GSY1 gene. The data are explained if S. cerevisiae has two glycogen synthase genes encoding proteins with significant sequence similarity The protein sequence predicted by the GSY1 gene lacks the extreme NH2-terminal phosphorylation sites of the mammalian enzymes. The COOH-terminal phosphorylated region of the mammalian enzyme over-all displayed low identity to the yeast COOH terminus, but there was homology in the region of the mammalian phosphorylation sites 3 and 4. Three potential cyclic AMP-dependent protein kinase sites are located in this region of the yeast enzyme. The region of glycogen synthase likely to be involved in covalent regulation are thus more variable than the catalytic center of the molecule.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data