Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Oct 25;253(20):7120-3.

Genetic evidence that cholera toxin substrates are regulatory components of adenylate cyclase

  • PMID: 212417
Free article

Genetic evidence that cholera toxin substrates are regulatory components of adenylate cyclase

G L Johnson et al. J Biol Chem. .
Free article

Abstract

Cholera toxin, using [32P]NAD+ as substrate, specifically radiolabels at least two proteins in plasma membranes of wild type S49 mouse lymphoma cells. The toxin-specific substrates are detectable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis as bands corresponding to molecular weights of 45,000 and a doublet of 52,000 to 53,000. Membranes of two other cell types exhibit similar patterns of radiolabeled bands specifically produced by incubation with cholera toxin: the "uncoupled" variant S49 cell, which possesses adenylate cyclase activity unresponsive to hormones, and the HTC4 rat hepatoma cell, which lacks detectable catalytic adenylate cyclase activity but contains components of the cyclase system necessary for regulation by guanyl nucleotides and NaF. Little or no toxin-specific radiolabeling is observed in membranes of a fourth cell type, the adenylate cyclase activity-deficient S49 variant, which functionally lacks components of the cyclase system involved in cholera toxin action and regulation by guanyl nucleotides and NaF. The toxin-specific labeling pattern is not observed in membranes prepared from wild type S49 cells previously treated with cholera toxin in culture. One or both of the toxin substrates thus appears to be involved in regulation of adenylate cyclase by guanyl nucleotides and fluoride ion.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources