Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Apr 30;63(4-5):197-208.
doi: 10.1016/j.addr.2011.01.006. Epub 2011 Jan 15.

RNA interference therapy via functionalized scaffolds

Affiliations
Review

RNA interference therapy via functionalized scaffolds

Michael Monaghan et al. Adv Drug Deliv Rev. .

Abstract

Tissue engineering aims to provide structural and biomolecular cues to compromised tissues through scaffolds. An emerging biomolecular cue is that of RNA interference by which the expression of genes can be silenced through a potent endogenous pathway. Recombinant viral-based approaches in RNAi delivery exist; however non-viral strategies offer many opportunities to exploit this mechanism of regulation in a safer way. Current RNAi therapies in clinical trials are without a vector (naked) or have slightly modified structures. Modification of these molecules with efficient backbone moieties for improved stability and potency, protecting and buffering them with delivery vehicles, and using scaffolds as reservoirs of delivery is at the frontier of current research. However, to enable an efficient sustained therapeutic effect scaffolds have a potentially significant role to play. This review presents non-viral delivery of RNAi that have been attempted via tissue engineered scaffolds. For RNAi to have a clinical impact, it is imperative to evaluate optimal delivery systems to ensure that the efficacy of this promising technology can be maximized.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources