An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution
- PMID: 21243359
- DOI: 10.1007/s00285-010-0395-z
An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution
Abstract
In this paper, we present a mathematical description for excitable biological membranes, in particular neuronal membranes. We aim to model the (spatio-) temporal dynamics, e.g., the travelling of an action potential along the axon, subject to noise, such as ion channel noise. Using the framework of Piecewise Deterministic Processes (PDPs) we provide an exact mathematical description-in contrast to pseudo-exact algorithms considered in the literature-of the stochastic process one obtains coupling a continuous time Markov chain model with a deterministic dynamic model of a macroscopic variable, that is coupling Markovian channel dynamics to the time-evolution of the transmembrane potential. We extend the existing framework of PDPs in finite dimensional state space to include infinite-dimensional evolution equations and thus obtain a stochastic hybrid model suitable for modelling spatio-temporal dynamics. We derive analytic results for the infinite-dimensional process, such as existence, the strong Markov property and its extended generator. Further, we exemplify modelling of spatially extended excitable membranes with PDPs by a stochastic hybrid version of the Hodgkin-Huxley model of the squid giant axon. Finally, we discuss the advantages of the PDP formulation in view of analytical and numerical investigations as well as the application of PDPs to structurally more complex models of excitable membranes.
© Springer-Verlag 2011
Similar articles
-
The what and where of adding channel noise to the Hodgkin-Huxley equations.PLoS Comput Biol. 2011 Nov;7(11):e1002247. doi: 10.1371/journal.pcbi.1002247. Epub 2011 Nov 17. PLoS Comput Biol. 2011. PMID: 22125479 Free PMC article. Review.
-
Comparison of Langevin and Markov channel noise models for neuronal signal generation.Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):011918. doi: 10.1103/PhysRevE.81.011918. Epub 2010 Jan 29. Phys Rev E Stat Nonlin Soft Matter Phys. 2010. PMID: 20365410
-
Intrinsic coherence resonance in excitable membrane patches.Math Biosci. 2007 Jun;207(2):235-45. doi: 10.1016/j.mbs.2006.08.024. Epub 2006 Sep 7. Math Biosci. 2007. PMID: 17070870
-
Modelling in vivo action potential propagation along a giant axon.J Math Biol. 2015 Jan;70(1-2):237-63. doi: 10.1007/s00285-013-0751-x. Epub 2014 Feb 20. J Math Biol. 2015. PMID: 24553620
-
Accurate Langevin approaches to simulate Markovian channel dynamics.Phys Biol. 2015 Sep 25;12(6):061001. doi: 10.1088/1478-3975/12/6/061001. Phys Biol. 2015. PMID: 26403205 Review.
Cited by
-
Stochastic Hybrid Systems in Cellular Neuroscience.J Math Neurosci. 2018 Aug 22;8(1):12. doi: 10.1186/s13408-018-0067-7. J Math Neurosci. 2018. PMID: 30136005 Free PMC article. Review.
-
Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology.PLoS Comput Biol. 2016 Dec 13;12(12):e1005236. doi: 10.1371/journal.pcbi.1005236. eCollection 2016 Dec. PLoS Comput Biol. 2016. PMID: 27959915 Free PMC article.
-
Mutual and asynchronous anticipation and action in sports as globally competitive and locally coordinative dynamics.Sci Rep. 2015 Nov 5;5:16140. doi: 10.1038/srep16140. Sci Rep. 2015. PMID: 26538452 Free PMC article.
-
Stochastic representations of ion channel kinetics and exact stochastic simulation of neuronal dynamics.J Comput Neurosci. 2015 Feb;38(1):67-82. doi: 10.1007/s10827-014-0528-2. Epub 2014 Nov 19. J Comput Neurosci. 2015. PMID: 25408289
-
Adiabatic reduction of a model of stochastic gene expression with jump Markov process.J Math Biol. 2014 Apr;68(5):1051-70. doi: 10.1007/s00285-013-0661-y. Epub 2013 Mar 5. J Math Biol. 2014. PMID: 23460478
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources