Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jan-Feb;4(1):45-9.
doi: 10.1016/1050-1738(94)90025-6.

Mechanism of calcification in atherosclerosis

Affiliations

Mechanism of calcification in atherosclerosis

L L Demer et al. Trends Cardiovasc Med. 1994 Jan-Feb.

Abstract

Calcification is commonly associated with atherosclerosis, and it has important clinical implications, especially in coronary arteries. The mineral has been identified as the same mineral as in bone, hydroxyapatite, and several features of its development suggest a mechanism similar to osteogenesis and not merely passive precipitation. The artery wall has been shown to contain several bone-related proteins, including those for osteopontin, osteonectin, and osteocalcin, as well as proteoglycan core proteins homologous with bone biglycan. Our laboratory recently demonstrated that a potent osteogenic differentiation factor, bone morphogenetic protein 2a, is expressed in calcified human atherosclerotic lesions, suggesting that arterial calcification may be initiated by an osteogenic differentiation. In addition, a cell capable of calcium mineral formation in vitro has been isolated from bovine and human aorta and identified by immunostaining as having a surface marker characteristic of microvascular pericytes. These findings suggest the possibility that plaque calcification develops when a signal from atherosclerotic plaque or a factor associated with atherosclerosis induces expression of bone morphogenetic protein, leading to osteogenic differentiation of pluripotential, pericytelike cells located in the arterial intima, which then produce bonelike matrix and hydroxyapatite mineral. These findings also raise questions as to whether osteogenic-promoting factors used to prevent osteoporosis may also increase risk of arterial calcification.

PubMed Disclaimer

LinkOut - more resources