Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Apr;9(4):679-88.
doi: 10.1111/j.1538-7836.2011.04204.x.

The study of the effect of splicing mutations in von Willebrand factor using RNA isolated from patients' platelets and leukocytes

Affiliations
Free article

The study of the effect of splicing mutations in von Willebrand factor using RNA isolated from patients' platelets and leukocytes

I Corrales et al. J Thromb Haemost. 2011 Apr.
Free article

Abstract

Background: In von Willebrand factor (VWF) the effect of mutations potentially affecting mRNA processing or splicing is less predictable than that of other mutations (e.g. nonsense or missense substitutions). Bioinformatic tools can provide a valuable means to determine the consequences of potential splice site mutations (PSSM), but functional studies are mandatory to elucidate the true effect of the variation detected.

Objectives, patients and methods: After identification of PSSM in VWD patients, we began a systematic study of their in vivo effect in RNA extracted from the patients' platelets and leukocytes.

Results and conclusions: Thirteen pairs of primers were designed for full amplification of VWF mRNA by RT-PCR that, after sequencing of aberrant products, enabled elucidation of the PSSM consequences for mRNA processing. This procedure was used to study seven different PSSM identified in four patients demonstrating diverse molecular mechanisms such as exon skipping (c.533-2A>G and c.8155+3G>C) and the activation of a cryptic splice site (c.7730-1G>C). No visible effect was evident for c.1533+15G>A and c.5170+10C>T and the consequence of c.[546G>A;7082-2A>G] was hidden by nonsense-mediated mRNA decay (NMD). Results were compared with in silico predictions of four splice-site analysis tools. We demonstrate selective degradation of VWF mRNA bearing PSSM by NMD for several mutations, which suggests that NMD represents a general mechanism for truncating mutations in VWF. Furthermore, because NMD efficiency varies between cell types, use of RNA from both platelets and leukocytes for in vivo study of VWF PSSM offers complementary results, particularly in cases in which NMD occurs in the allele carrying the mutation.

PubMed Disclaimer

Similar articles

Cited by

Publication types