Serotonergic regulation of neuronal excitability in the prefrontal cortex
- PMID: 21251917
- PMCID: PMC3110517
- DOI: 10.1016/j.neuropharm.2011.01.015
Serotonergic regulation of neuronal excitability in the prefrontal cortex
Abstract
The cerebral cortex receives a dense serotonergic innervation originating predominantly from the dorsal raphe nucleus. This innervation regulates cortical functioning by activating multiple serotonin receptors that are differentially expressed by pyramidal cells and interneurons. Electrophysiological studies in the prefrontal cortex indicate that receptors of the 5-HT(1A) and 5-HT(2A) subtypes are the main serotonin receptors regulating membrane excitability in pyramidal cells. Most pyramidal cells in layer V coexpress 5-HT(1A) and 5-HT(2A) receptors that together regulate how these neurons encode excitatory input into neuronal firing. In contrast, a subset of large pyramidal cells of deep layer V appears to express exclusively 5-HT(2A) receptors that depolarize and excite these cells. Serotonin also depolarizes and excites at least two classes of GABAergic interneurons by acting on 5-HT(3) and 5-HT(2A) receptors. The differential expression of serotonin receptors in different pyramidal cells and interneurons is consistent with a growing appreciation of the anatomical, molecular and functional heterogeneity of pyramidal cells and interneurons of the cerebral cortex. These findings begin to lay the ground for a cellular-level understanding of the serotonergic regulation of the prefrontal cortex.
Copyright © 2011 Elsevier Ltd. All rights reserved.
Figures


References
-
- Aghajanian GK, Marek GJ. Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology. 1997;36:589–599. - PubMed
-
- Andrade R, Malenka RC, Nicoll RA. A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science. 1986;234:1261–1265. - PubMed
-
- Araneda R, Andrade R. 5-Hydroxytryptamine2 and 5-hydroxytryptamine 1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience. 1991;40:399–412. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources