Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Oct;127(1-2):4-8.
doi: 10.1016/j.jsbmb.2011.01.005. Epub 2011 Jan 18.

Minireview: PPARγ as the target of obesogens

Affiliations
Review

Minireview: PPARγ as the target of obesogens

Amanda Janesick et al. J Steroid Biochem Mol Biol. 2011 Oct.

Abstract

The peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipogenesis and is medically important for its connections to obesity and the treatment of type II diabetes. Activation of this receptor by certain natural or xenobiotic compounds has been shown to stimulate adipogenesis in vitro and in vivo. Obesogens are chemicals that ultimately increase obesity through a variety of potential mechanisms, including activation of PPARγ. The first obesogen for which a definitive mechanism of action has been elucidated is the PPARγ and RXR activator tributyltin; however, not all chemicals that activate PPARγ are adipogenic or correlated with obesity in humans. There are multiple mechanisms through which obesogens can target PPARγ that may not involve direct activation of the receptor. Ligand-independent mechanisms could act through obesogen-mediated post-translational modification of PPARγ which cause receptor de-repression or activation. PPARγ is active in multipotent stem cells committing to the adipocyte fate during fat cell development. By modifying chromatin structure early in development, obesogens have the opportunity to influence the promoter activity of PPARγ, or the ability of PPARγ to bind to its target genes, ultimately biasing the progenitor pool towards the fat lineage. Obesogens that act by directly or indirectly activating PPARγ, by increasing the levels of PPARγ protein, or enhancing its recruitment to promoters of key genes in the adipogenic pathway may ultimately play an important role in adipogenesis and obesity.

PubMed Disclaimer

References

    1. Bernlohr DA, Doering TL, Kelly TJ, Jr, Lane MD. Tissue specific expression of p422 protein, a putative lipid carrier, in mouse adipocytes. Biochem Biophys Res Commun. 1985;132(2):850–855. - PubMed
    1. Bernlohr DA, Angus CW, Lane MD, Bolanowski MA, Kelly TJ., Jr Expression of specific mRNAs during adipose differentiation: identification of an mRNA encoding a homologue of myelin P2 protein. Proc Natl Acad Sci U S A. 1984;81(17):5468–5472. - PMC - PubMed
    1. Tchoukalova YD, Sarr MG, Jensen MD. Measuring committed preadipocytes in human adipose tissue from severely obese patients by using adipocyte fatty acid binding protein. Am J Physiol Regul Integr Comp Physiol. 2004;287(5):R1132–1140. - PubMed
    1. Graves RA, Tontonoz P, Spiegelman BM. Analysis of a tissue-specific enhancer: ARF6 regulates adipogenic gene expression. Mol Cell Biol. 1992;12(7):3313. - PMC - PubMed
    1. Tontonoz P, Graves RA, Budavari AI, Erdjument-Bromage H, Lui M, Hu E, Tempst P, Spiegelman BM. Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR gamma and RXR alpha. Nucleic Acids Res. 1994;22(25):5628–5634. - PMC - PubMed

Publication types