Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov-Dec;46(6):678-84.

Purification and characterization of an intracellular beta-glucosidase from the protoplast fusant of Aspergillus oryzae and Aspergillus niger

Affiliations
  • PMID: 21254729

Purification and characterization of an intracellular beta-glucosidase from the protoplast fusant of Aspergillus oryzae and Aspergillus niger

F M Zhu et al. Prikl Biokhim Mikrobiol. 2010 Nov-Dec.

Abstract

Protoplasts of Aspergillus oryzae 3.481 and Aspergillus niger 3.316 were prepared using cellulose and snail enzyme with 0.6 M NaCl as osmotic stabilizer. Protoplast fusion has been performed using 35% polyethylene glycol 4.000 with 0.01 mM CaCl2. The fused protoplasts have been regenerated on regeneration medium and fusants were selected for further studies. An intracellular beta-glucosidase (EC 3.2.1.21) was purified from the protoplast fusant of Aspergillus oryzae 3.481 and Aspergillus niger 3.316 and characterized. The enzyme was purified 138.85-fold by ammonium sulphate precipitation, DE-22 ion exchange and Sephadex G-150 gel filtration chromatography with a specific activity of 297.14 U/mg of protein. The molecular mass of the purified enzyme was determined to be about 125 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The enzyme had an optimum pH of 5.4 and temperature of 65 degrees C, respectively. This enzyme showed relatively high stability against pH and temperature and was stable in the pH range of 3.0-6.6. Na+, K+, Ca2+, Mg2+ and EDTA completely inhibited the enzyme activity at a concentration of 10 mM. The enzyme activity was accelerated by Fe3+. The enzyme activity was strongly inhibited by glucose, the end product ofglucoside hydrolysis. The K(m) and V(max) values against salicin as substrate were 0.035 mM and 1.7215 micromol min(-1), respectively.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources