Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Apr;56(4):442-8.
doi: 10.4187/respcare.00454. Epub 2011 Jan 21.

Transcutaneous measurement of carbon dioxide tension during extended monitoring: evaluation of accuracy and stability, and an algorithm for correcting calibration drift

Affiliations

Transcutaneous measurement of carbon dioxide tension during extended monitoring: evaluation of accuracy and stability, and an algorithm for correcting calibration drift

David J Berlowitz et al. Respir Care. 2011 Apr.

Abstract

Background: When polysomnography is indicated in a patient with a presumed sleep disorder, continuous monitoring of arterial carbon dioxide tension (P(aCO(2))) is desirable, especially if nocturnal hypoventilation is suspected. Transcutaneous CO(2) monitors (P(tcCO(2))) provide a noninvasive correlate of P(aCO(2)), but their accuracy and stability over extended monitoring have been considered inadequate for the diagnosis of hypoventilation. We examined the stability and accuracy of P(tcCO(2)) measurements and the performance of a previously described linear interpolation technique designed to correct for calibration drift.

Methods: We compared the P(tcCO(2)) values from 2 TINA TCM-3 monitors to P(aCO(2)) values from arterial blood samples obtained at the beginning, every 15 min of the first hour, and then hourly over 8 hours of monitoring in 6 hemodynamically stable, male, intensive care patients (mean age 46 ± 17 y).

Results: Time had a significant (P = .002) linear effect on the P(tcCO(2))-P(aCO(2)) difference, suggesting calibration drift over the monitoring period. We found no differences between monitor type or interaction between time and monitor type. For the 2 monitors the uncorrected bias was 3.6 mm Hg and the limits of agreement were -5.1 to 12.3 mm Hg. Our linear interpolation algorithm improved the bias and limits of agreement to 0.4 and -5.5 to 6.4 mm Hg, respectively.

Conclusions: Following stabilization and correction for both offset and drift, P(tcCO(2)) tracks P(aCO(2)) with minimal residual bias over 8 hours of monitoring. Should future research confirm these findings, then interpolated P(tcCO(2)) may have an increased role in detecting sleep hypoventilation and assessing the efficacy of treatment.

PubMed Disclaimer

Publication types

LinkOut - more resources