Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Apr;6(4):707-15.
doi: 10.1097/JTO.0b013e31820a3a6b.

Phosphoinositide-3-kinase catalytic alpha and KRAS mutations are important predictors of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer

Affiliations
Free article

Phosphoinositide-3-kinase catalytic alpha and KRAS mutations are important predictors of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer

Vienna Ludovini et al. J Thorac Oncol. 2011 Apr.
Free article

Abstract

Background: Specific mutations of the epidermal growth factor receptor (EGFR) gene are predictive for favorable response to tyrosine kinase inhibitors (TKIs) and are associated with a good prognosis. In contrast, Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation has been shown to predict poor response to such therapy. Nevertheless, tumor that initially responds to EGFR-TKIs almost inevitably becomes resistant later. Other mechanisms of resistance to EGFR inhibitors could involve activating mutations of the other main EGFR effector pathway, i.e., the phosphoinositide-3-kinase/phosphate and tensin homologue deleted from chromosome 10 (PTEN)/alpha serine/threonine protein kinase (AKT) pathway. The aim of this study was to investigate the role of phosphoinositide-3-kinase catalytic alpha (PIK3CA), EGFR, and KRAS gene mutations in predicting response and survival in patients with non-small cell lung cancer (NSCLC) treated with EGFR-TKIs.

Patients and methods: A total of 166 patients with advanced NSCLC treated with EGFR-TKI with available archival tissue specimens were included. PIK3CA, EGFR, and KRAS mutations were analyzed using polymerase chain reaction-based sequencing.

Results: EGFR mutation was detected in 25.3% of patients, PIK3CA mutation in 4.1%, and KRAS mutation in 6.7%. PIK3CA mutation correlated with shorter median time to progression (TTP) (p = 0.01) and worse overall survival (OS) (p < 0.001). EGFR mutation (p < 0.0001) correlated with favorable response to TKIs treatment and longer TTP (p < 0.0001). KRAS mutation correlated with progressive disease (p = 0.05) and shorter median TTP (p = 0.003) but not with OS. Cox multivariate analysis including histology and performance status showed that PIK3CA mutation was an independent factor to predict worse OS (p = 0.0001) and shorter TTP (p = 0.03), while KRAS mutation to predict shorter TTP (p = 0.01).

Conclusion: PIK3CA and KRAS mutations seem to be indicators of resistance and poor survival in patients with NSCLC treated with EGFR-TKIs.

PubMed Disclaimer

Publication types

MeSH terms