Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Feb;43(1):19-23.
doi: 10.1007/s10863-011-9326-y.

Mitochondrial energy metabolism and redox responses to hypertriglyceridemia

Affiliations
Review

Mitochondrial energy metabolism and redox responses to hypertriglyceridemia

Luciane C Alberici et al. J Bioenerg Biomembr. 2011 Feb.

Abstract

In this work we review recent findings that explain how mitochondrial bioenergetic functions and redox state respond to a hyperlipidemic in vivo environment and may contribute to the maintenance of a normal metabolic phenotype. The experimental model utilized to evidence these adaptive mechanisms is especially useful for these studies since it exhibits genetic hypertriglyceridemia and avoids complications introduced by high fat diets. Liver from hypertrigliceridemic (HTG) mice have a greater content of glycerolipids together with increased mitochondrial free fatty acid oxidation. HTG liver mitochondria have a higher resting respiration rate but normal oxidative phosphorylation efficiency. This is achieved by higher activity of the mitochondrial potassium channel sensitive to ATP (mitoK(ATP)). The mild uncoupling mediated by mitoK(ATP) accelerates respiration rates and reduces reactive oxygen species generation. Although this response is not sufficient to inhibit lipid induced extra-mitochondrial oxidative stress in whole liver cells it avoids amplification of this redox imbalance. Furthermore, higher mitoK(ATP) activity increases liver, brain and whole body metabolic rates. These mitochondrial adaptations may explain why these HTG mice do not develop insulin resistance and obesity even under a severe hyperlipidemic state. On the contrary, when long term high fat diets are employed, insulin resistance, fatty liver and obesity develop and mitochondrial adaptations are inefficient to counteract energy and redox imbalances.

PubMed Disclaimer

References

    1. Free Radic Biol Med. 2008 Aug 1;45(3):231-41 - PubMed
    1. Diabetes Res Clin Pract. 2007 Sep;77 Suppl 1:S161-4 - PubMed
    1. Circ Res. 2001 Dec 7;89(12):1177-83 - PubMed
    1. Biochem Mol Biol Int. 1997 Jun;42(1):29-34 - PubMed
    1. Free Radic Biol Med. 2007 Apr 1;42(7):1039-48 - PubMed

Publication types

LinkOut - more resources