Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Apr;9(4):779-89.
doi: 10.1111/j.1538-7836.2011.04218.x.

Mechanisms underlying FeCl3-induced arterial thrombosis

Affiliations
Free article

Mechanisms underlying FeCl3-induced arterial thrombosis

A Eckly et al. J Thromb Haemost. 2011 Apr.
Free article

Abstract

Background: The FeCl(3)-induced vascular injury model is widely used to study thrombogenesis in vivo, but the processes leading to vascular injury and thrombosis are poorly defined.

Objectives: The aim of our study was to better characterize the mechanisms of FeCl(3)-induced vascular injury and thrombus formation, in order to evaluate the pathophysiological relevance of this model.

Methods: FeCl(3) was applied at different concentrations (from 7.5% to 20%) and for different time periods (up to 5 min) to mouse carotid or mesenteric arteries.

Results: Under all the conditions tested, ultrastructural analysis revealed that FeCl(3) diffused through the vessel wall, resulting in endothelial cell denudation without exposure of the inner layers. Hence, only the basement membrane components were exposed to circulating blood cells and might have contributed to thrombus formation. Shortly after FeCl(3) application, numerous ferric ion-filled spherical bodies appeared on the endothelial cells. Interestingly, platelets could adhere to these spheres and form aggregates. Immunogold labeling revealed important amounts of tissue factor at their surface, suggesting that these spheres may play a role in thrombin generation. In vitro experiments indicated that FeCl(3) altered the ability of adhesive proteins, including collagen, fibrinogen and von Willebrand factor, to support platelet adhesion. Finally, real-time intravital microscopy showed no protection against thrombosis in GPVI-immunodepleted and β(1)(-/-) mice, suggesting that GPVI and β(1) integrins, known to be involved in initial platelet adhesion and activation, do not play a critical role in FeCl(3)-induced thrombus formation.

Conclusion: This model should be used cautiously, in particular to study the earliest stage of thrombus formation.

PubMed Disclaimer

Comment in

  • A ride with ferric chloride.
    Brill A. Brill A. J Thromb Haemost. 2011 Apr;9(4):776-8. doi: 10.1111/j.1538-7836.2011.04238.x. J Thromb Haemost. 2011. PMID: 21362124 No abstract available.

Similar articles

Cited by

Publication types