Spatial light interference microscopy (SLIM)
- PMID: 21263640
- PMCID: PMC3482902
- DOI: 10.1364/OE.19.001016
Spatial light interference microscopy (SLIM)
Abstract
We present spatial light interference microscopy (SLIM) as a new optical microscopy technique, capable of measuring nanoscale structures and dynamics in live cells via interferometry. SLIM combines two classic ideas in light imaging: Zernike's phase contrast microscopy, which renders high contrast intensity images of transparent specimens, and Gabor's holography, where the phase information from the object is recorded. Thus, SLIM reveals the intrinsic contrast of cell structures and, in addition, renders quantitative optical path-length maps across the sample. The resulting topographic accuracy is comparable to that of atomic force microscopy, while the acquisition speed is 1,000 times higher. We illustrate the novel insight into cell dynamics via SLIM by experiments on primary cell cultures from the rat brain. SLIM is implemented as an add-on module to an existing phase contrast microscope, which may prove instrumental in impacting the light microscopy field at a large scale.
Figures







Similar articles
-
Instantaneous Spatial Light Interference Microscopy.Opt Express. 2010 Jan 18;18(2):1569-75. doi: 10.1364/OE.18.001569. Opt Express. 2010. PMID: 20173983
-
A multi-modal stereo microscope based on a spatial light modulator.Opt Express. 2013 Jul 15;21(14):16541-51. doi: 10.1364/OE.21.016541. Opt Express. 2013. PMID: 23938505
-
Digital holography of total internal reflection.Opt Express. 2008 Jun 23;16(13):9811-20. doi: 10.1364/oe.16.009811. Opt Express. 2008. PMID: 18575550
-
Electron interference: mystery and reality.Philos Trans A Math Phys Eng Sci. 2002 May 15;360(1794):897-920. doi: 10.1098/rsta.2001.0973. Philos Trans A Math Phys Eng Sci. 2002. PMID: 12804285 Review.
-
Phase recovery and lensless imaging by iterative methods in optical, X-ray and electron diffraction.Philos Trans A Math Phys Eng Sci. 2002 May 15;360(1794):875-95. doi: 10.1098/rsta.2001.0972. Philos Trans A Math Phys Eng Sci. 2002. PMID: 12804284 Review.
Cited by
-
Wide-field computational color imaging using pixel super-resolved on-chip microscopy.Opt Express. 2013 May 20;21(10):12469-83. doi: 10.1364/OE.21.012469. Opt Express. 2013. PMID: 23736466 Free PMC article.
-
Fast Fourier ptychographic quantitative phase microscopy for in vitro label-free imaging.Biomed Opt Express. 2023 Dec 6;15(1):95-113. doi: 10.1364/BOE.505267. eCollection 2024 Jan 1. Biomed Opt Express. 2023. PMID: 38223174 Free PMC article.
-
New perspectives on neuronal development via microfluidic environments.Trends Neurosci. 2012 Dec;35(12):752-61. doi: 10.1016/j.tins.2012.09.001. Epub 2012 Sep 29. Trends Neurosci. 2012. PMID: 23031246 Free PMC article. Review.
-
Live-dead assay on unlabeled cells using phase imaging with computational specificity.Nat Commun. 2022 Feb 7;13(1):713. doi: 10.1038/s41467-022-28214-x. Nat Commun. 2022. PMID: 35132059 Free PMC article.
-
Simultaneous optical measurements of cell motility and growth.Biomed Opt Express. 2011 Oct 1;2(10):2815-20. doi: 10.1364/BOE.2.002815. Epub 2011 Sep 22. Biomed Opt Express. 2011. PMID: 22025987 Free PMC article.
References
-
- G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics,” in Methods in Cell Biology, P. J. Bhanu, ed. (Elsevier, 2008), p. 87. - PubMed
-
- Paganin D., Nugent K. A., “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80(12), 2586–2589 (1998).10.1103/PhysRevLett.80.2586 - DOI
-
- Zicha D., Dunn G. A., “An Image-Processing System For Cell Behavior Studies In Subconfluent Cultures,” J. Microsc. 179, 11–21 (1995).10.1111/j.1365-2818.1995.tb03609.x - DOI
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials