Oncogenic B-RAF signaling in melanoma impairs the therapeutic advantage of autophagy inhibition
- PMID: 21270111
- DOI: 10.1158/1078-0432.CCR-10-3003
Oncogenic B-RAF signaling in melanoma impairs the therapeutic advantage of autophagy inhibition
Abstract
Purpose: Metastatic melanoma is characterized by extremely poor survival rates and hence novel therapies are urgently required. The ability of many anticancer drugs to activate autophagy, a lysosomal-mediated catabolic process which usually promotes cell survival, suggests targeting the autophagy pathway may be a novel means to augment therapy.
Experimental design: Autophagy and apoptosis were assessed in vitro in human melanoma cell lines in response to clinically achievable concentrations of the endoplasmic reticulum (ER) stress-inducing drugs fenretinide or bortezomib, and in vivo using a s.c. xenograft model.
Results: Autophagy was activated in response to fenretinide or bortezomib in B-RAF wild-type cells, shown by increased conversion of LC3 to the autophagic vesicle-associated form (LC3-II) and redistribution to autophagosomes and autolysosomes, increased acidic vesicular organelle formation and autophagic vacuolization. In contrast, autophagy was significantly reduced in B-RAF-mutated melanoma cells, an effect attributed partly to oncogenic B-RAF. Rapamycin treatment was unable to stimulate LC3-II accumulation or redistribution in the presence of mutated B-RAF, indicative of de-regulated mTORC1-dependent autophagy. Knockdown of Beclin-1 or ATG7 sensitized B-RAF wild-type cells to fenretinide- or bortezomib-induced cell death, demonstrating a pro-survival function of autophagy. In addition, autophagy was partially reactivated in B-RAF-mutated cells treated with the BH3 mimetic ABT737 in combination with fenretinide or bortezomib, suggesting autophagy resistance is partly mediated by abrogated Beclin-1 function.
Conclusions: Our findings suggest inhibition of autophagy in combination with ER stress-inducing agents may represent a means by which to harness autophagy for the therapeutic benefit of B-RAF wild-type melanoma.
©2011 AACR.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous

