Analysis of retinal fundus images for grading of diabetic retinopathy severity
- PMID: 21271293
- DOI: 10.1007/s11517-011-0734-2
Analysis of retinal fundus images for grading of diabetic retinopathy severity
Abstract
Diabetic retinopathy (DR) is a sight threatening complication due to diabetes mellitus that affects the retina. In this article, a computerised DR grading system, which digitally analyses retinal fundus image, is used to measure foveal avascular zone. A v-fold cross-validation method is applied to the FINDeRS database to evaluate the performance of the DR system. It is shown that the system achieved sensitivity of >84%, specificity of >97% and accuracy of >95% for all DR stages. At high values of sensitivity (>95%), specificity (>97%) and accuracy (>98%) obtained for No DR and severe NPDR/PDR stages, the computerised DR grading system is suitable for early detection of DR and for effective treatment of severe cases.
Similar articles
-
Analysis of foveal avascular zone in colour fundus images for grading of diabetic retinopathy severity.Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5632-5. doi: 10.1109/IEMBS.2010.5628041. Annu Int Conf IEEE Eng Med Biol Soc. 2010. PMID: 21097305
-
The diagnostic accuracy of an intelligent and automated fundus disease image assessment system with lesion quantitative function (SmartEye) in diabetic patients.BMC Ophthalmol. 2019 Aug 14;19(1):184. doi: 10.1186/s12886-019-1196-9. BMC Ophthalmol. 2019. PMID: 31412800 Free PMC article.
-
Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer-assisted diagnostic system for grading diabetic retinopathy.Diabetes Metab. 2010 Jun;36(3):213-20. doi: 10.1016/j.diabet.2010.01.002. Epub 2010 Mar 10. Diabetes Metab. 2010. PMID: 20219404
-
Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey.Artif Intell Med. 2019 Aug;99:101701. doi: 10.1016/j.artmed.2019.07.009. Epub 2019 Aug 7. Artif Intell Med. 2019. PMID: 31606116 Review.
-
Optical coherence tomography angiography and microvascular changes in diabetic retinopathy: a systematic review.Acta Ophthalmol. 2019 Feb;97(1):7-14. doi: 10.1111/aos.13859. Epub 2018 Sep 20. Acta Ophthalmol. 2019. PMID: 30238633
Cited by
-
Detection of Diabetic Retinopathy using Convolutional Neural Networks for Feature Extraction and Classification (DRFEC).Multimed Tools Appl. 2022 Nov 29:1-59. doi: 10.1007/s11042-022-14165-4. Online ahead of print. Multimed Tools Appl. 2022. PMID: 36467440 Free PMC article.
-
Which Color Channel Is Better for Diagnosing Retinal Diseases Automatically in Color Fundus Photographs?Life (Basel). 2022 Jun 28;12(7):973. doi: 10.3390/life12070973. Life (Basel). 2022. PMID: 35888063 Free PMC article.
-
Automatic Detection of Diabetic Retinopathy in Retinal Fundus Photographs Based on Deep Learning Algorithm.Transl Vis Sci Technol. 2019 Nov 12;8(6):4. doi: 10.1167/tvst.8.6.4. eCollection 2019 Nov. Transl Vis Sci Technol. 2019. PMID: 31737428 Free PMC article.
-
Classification of diabetes maculopathy images using data-adaptive neuro-fuzzy inference classifier.Med Biol Eng Comput. 2015 Dec;53(12):1345-60. doi: 10.1007/s11517-015-1329-0. Epub 2015 Jun 25. Med Biol Eng Comput. 2015. PMID: 26109519
-
Diabetic retinopathy grading by digital curvelet transform.Comput Math Methods Med. 2012;2012:761901. doi: 10.1155/2012/761901. Epub 2012 Sep 12. Comput Math Methods Med. 2012. PMID: 23056148 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical