Inosine triphosphatase genetic variants are protective against anemia during antiviral therapy for HCV2/3 but do not decrease dose reductions of RBV or increase SVR
- PMID: 21274861
- PMCID: PMC4892367
- DOI: 10.1002/hep.24068
Inosine triphosphatase genetic variants are protective against anemia during antiviral therapy for HCV2/3 but do not decrease dose reductions of RBV or increase SVR
Abstract
Two functional variants in the inosine triphosphatase (ITPA) gene causing inosine triphosphatase (ITPase) deficiency protect against ribavirin (RBV)-induced hemolytic anemia and the need for RBV dose reduction in patients with genotype 1 hepatitis C virus (HCV). No data are available for genotype 2/3 HCV. We evaluated the association between the casual ITPA variants and on-treatment anemia in a well-characterized cohort of genotype 2/3 patients treated with variable-duration pegylated interferon alfa-2b (PEG-IFN-α2b) and RBV. Two hundred thirty-eight Caucasian patients were included in this retrospective study [185 (78%) with genotype 2 and 53 (22%) with genotype 3]. Patients were treated with PEG-IFN-α2b plus weight-based RBV (1000/1200 mg) for 12 (n = 109) or 24 weeks (n = 129). The ITPA polymorphisms rs1127354 and rs7270101 were genotyped, and an ITPase deficiency variable was defined that combined both ITPA variants according to their effect on ITPase activity. The primary endpoint was hemoglobin (Hb) reduction in week 4. We also considered Hb reduction over the course of therapy, the need for RBV dose modification, and the rate of sustained virological response (SVR). The ITPA variants were strongly and independently associated with protection from week 4 anemia (P = 10(-6) for rs1127354 and P = 10(-7) for rs7270101). Combining the variants into the ITPase deficiency variable increased the strength of association (P = 10(-11) ). ITPase deficiency protected against anemia throughout treatment. ITPase deficiency was associated with a delayed time to an Hb level < 10 g/dL (hazard ratio = 0.25, 95% confidence interval = 0.08-0.84, P = 0.025) but not with the rate of RBV dose modification (required per protocol at Hb < 9.5 g/dL). There was no association between the ITPA variants and SVR.
Conclusion: Two ITPA variants were strongly associated with protection against treatment-related anemia in patients with genotype 2/3 HCV, but they did not decrease the need for RBV dose reduction or increase the rate of SVR.
Copyright © 2010 American Association for the Study of Liver Diseases.
Conflict of interest statement
Potential conflict of interest: Dr. Thompson advises Roche and Merck; he also serves on the speaker’s bureau of Merck. Dr. Thompson receives travel grants from Gilead. Dr. Naggie advises Vertex. Dr. Goldstein consults for Abbott and receives grants from GSK. Dr. McHutchison owns intellectual property rights in IL2bB and receives royalties on testing. Dr. McHutchison consults for, advises, serves on the speaker’s bureau of, and receives grants from Merck/Schering.
Figures
References
-
- Lavanchy D. The global burden of hepatitis C. Liver Int. 2009;29(Suppl 1):74–81. - PubMed
-
- Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet. 2001;358:958–965. - PubMed
-
- Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, Goncales FL, Jr, et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med. 2002;347:975–982. - PubMed
-
- McHutchison JG, Manns M, Patel K, Poynard T, Lindsay KL, Trepo C, et al. Adherence to combination therapy enhances sustained response in genotype-1-infected patients with chronic hepatitis C. Gastroenterology. 2002;123:1061–1069. - PubMed
-
- Sumi S, Marinaki AM, Arenas M, Fairbanks L, Shobowale-Bakre M, Rees DC, et al. Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency. Hum Genet. 2002;111:360–367. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Miscellaneous