Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul;115(1):159-64.
doi: 10.3171/2010.12.JNS10926. Epub 2011 Jan 28.

Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus

Affiliations

Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus

Richard D Penn et al. J Neurosurg. 2011 Jul.

Abstract

Object: The dynamics of fluid flow in normal pressure hydrocephalus (NPH) are poorly understood. Normally, CSF flows out of the brain through the ventricles. However, ventricular enlargement during NPH may be caused by CSF backflow into the brain through the ventricles. A previous study showed this reversal of flow; in the present study, the authors provide additional clinical data obtained in patients with NPH and supplement these data with computer simulations to better understand the CSF flow and ventricular wall displacement and emphasize its clinical implications.

Methods: Three NPH patients and 1 patient with aqueductal stenosis underwent cine phase-contrast MR imaging (cine MR imaging) for measurement of CSF flow and ventricle wall movement during the cardiac cycle. These data were compared to data previously obtained in 8 healthy volunteers. The CSF flow measurements were obtained at the outlet of the aqueduct of Sylvius. Calculation of the ventricular wall movement was determined from the complete set of cine MR images obtained axially at the middle of the lateral ventricle. The data were obtained before and after CSF removal with a ventriculoperitoneal shunt with an adjustable valve. To supplement the clinical data, a computational model was used to predict the transmural pressure and flow.

Results: In healthy volunteers, net CSF aqueductal flow was 1.2 ml/minute in the craniocaudal direction. In patients with NPH, the net CSF flow was in the opposite direction--the caudocranial direction--before shunt placement. After shunting, the magnitude of the abnormal fluid flow decreased or reversed, with the flow resembling the normal flow patterns observed in healthy volunteers.

Conclusions: The authors' MR imaging-based measurements of the CSF flow direction and lateral ventricle volume size change and the results of computer modeling of fluid dynamics lead them to conclude that the directional pattern and magnitude of CSF flow in patients with NPH may be an indication of the disease state. This has practical implications for shunt design and understanding the mechanisms that produce hydrocephalus.

PubMed Disclaimer

Comment in

  • Normal pressure hydrocephalus.
    Bateman GA. Bateman GA. J Neurosurg. 2013 Oct;119(4):1075-7. doi: 10.3171/2011.2.JNS11216. Epub 2013 Aug 9. J Neurosurg. 2013. PMID: 23930852 No abstract available.

Publication types

LinkOut - more resources