Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011:62:437-60.
doi: 10.1146/annurev-arplant-042809-112312.

Genetic regulation of sporopollenin synthesis and pollen exine development

Affiliations
Review

Genetic regulation of sporopollenin synthesis and pollen exine development

Tohru Ariizumi et al. Annu Rev Plant Biol. 2011.

Abstract

Pollen acts as a biological protector of male sperm and is covered by an outer cell wall polymer called the exine, which consists of durable sporopollenin. Despite the astonishingly divergent structure of the exine across taxa, the developmental processes of its formation surprisingly do not vary, which suggests the preservation of a common molecular mechanism. The precise molecular mechanisms underlying pollen exine patterning remain highly elusive, but they appear to be dependent on at least three major developmental processes: primexine formation, callose wall formation, and sporopollenin synthesis. Several lines of evidence suggest that the sporopollenin is built up via catalytic enzyme reactions in the tapetum, and both the primexine and callose wall provide an efficient substructure for sporopollenin deposition. Herein, we review the currently accepted understanding of the molecular regulation of sporopollenin biosynthesis and examine unanswered questions regarding the requirements underpinning proper exine pattern formation, as based on genetic evidence.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources