Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb;101(3-4):529-39.
doi: 10.1016/j.aquatox.2010.12.005. Epub 2010 Dec 17.

Ultraviolet B retards growth, induces oxidative stress, and modulates DNA repair-related gene and heat shock protein gene expression in the monogonont rotifer, Brachionus sp

Affiliations

Ultraviolet B retards growth, induces oxidative stress, and modulates DNA repair-related gene and heat shock protein gene expression in the monogonont rotifer, Brachionus sp

Ryeo-Ok Kim et al. Aquat Toxicol. 2011 Feb.

Abstract

Ultraviolet B (UV-B) radiation causes direct cellular damage by breakage of DNA strands and oxidative stress induction in aquatic organisms. To understand the effect of UV-B radiation on the rotifer, Brachionus sp., several parameters including 24-h survival rate, population growth rate, and ROS level were measured after exposure to a wide range of UV-B doses. To check the expression of other important inducible genes such as replication protein A (RPA), DNA-dependent protein kinase (DNA-PK), Ku70, Ku80, and heat shock proteins (hsps) after UV-B radiation, we observed dose- and time-dependency at 2kJ/m(2). We also examined 13 hsp genes for their roles in the UV-B damaged rotifer. Results showed that UV-B remarkably inhibited the population growth of Brachionus sp. The level of intracellular reactive oxygen species (ROS) was high at 2kJ/m(2), suggesting that 2kJ/m(2) would already be toxic. This result was supported by other enzymatic activities, such as GSH levels, glutathione peroxidase, glutathione S-transferase, and glutathione reductase. For dose dependency, low doses of UV-B radiation (2, 4, and 6kJ/m(2)) significantly up-regulated the examined genes (e.g. RPA, DNA-PK, Ku70, and Ku80). For the time course study, RPA genes showed immediate up-regulation but returned to basal or lower expression levels compared to the control 3h after UV-B exposure. The DNA-PK and Ku70/80 genes significantly increased, indicating that they may be involved in repairing processes against a low dose of UV-B exposure (2kJ/m(2)). At the basal level, the hsp90α1 gene showed the highest expression, and followed by hsp10, hsp30, hsp60, and hsc70, and hsp90β in adults (w/o egg). In eggs, the hsp10 gene was expressed the highest, and followed by hsp30, hsp27, hsp90α1, and hsp60 genes. In real-time RT-PCR array on rotifer hsp genes, low doses of UV-B radiation (2 and 4kJ/m(2)) showed up-regulation of several hsp genes but most of the hsp genes showed down-regulation at 8kJ/m(2) and higher, indicating that significant Hsp-mediated cellular damage already occurred at low doses. For the time course study of four hsp genes (hsp20, hsp27, hsp70, hsp90α1), they showed a significant correlation for UV-B radiation (2kJ/m(2)). In this paper, we demonstrated that UV-B radiation would affect growth retardation with up- or down-regulation of some important genes in DNA replication, repair process, and chaperoning. This finding provides a better understanding of molecular mechanisms involved in UV-B-mediated cellular damage in the rotifer, Brachionus sp.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources