Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation
- PMID: 21279414
- PMCID: PMC3094491
- DOI: 10.1007/s10286-010-0098-y
Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation
Abstract
Background: Power spectral analysis of heart rate variability is used to assess cardiac autonomic function. The relationship of low frequency (LF) power to cardiac sympathetic tone has been unclear. We reported previously that LF power may reflect baroreflex modulation. In this study we attempted to replicate our findings in additional subject cohorts, taking into account possible influences of respiration and using different methods to measure baroreflex-cardiovagal gain (BCG).
Objective: We assessed relationships of LF power, including respiration-adjusted LF power (LFa), with cardiac sympathetic innervation and baroreflex function in subjects with or without neuroimaging evidence of cardiac sympathetic denervation.
Methods: Values for LF power at baseline supine, seated, and during the Valsalva maneuver were compared between subject groups with low or normal myocardial concentrations of 6-[(18)F]fluorodopamine-derived radioactivity. BCG was calculated from the slope of cardiac interbeat interval vs. systolic pressure during Phase II of the Valsalva maneuver or after i.v. nitroglycerine injection (the Oxford technique).
Results: LF and LFa were unrelated to myocardial 6-[(18)F]fluorodopamine-derived radioactivity. During sitting rest and the Valsalva maneuver logs of LF and LFa correlated positively with the log of Phase II BCG (r = 0.61, p = 0.0005; r = 0.47, p = 0.009; r = 0.69, p < 0.0001; r = 0.60, p = 0.0006). Groups with Low BCG (≤ 3 ms/mmHg) had low LF and LFa regardless of cardiac innervation. The log of LF power during supine rest correlated with the log of Oxford BCG (r = 0.74, p < 0.0001).
Conclusion: LF power, with or without respiratory adjustment, reflects baroreflex modulation and not cardiac sympathetic tone.
Conflict of interest statement
The authors have no conflicts of interest to disclose.
Figures




References
-
- Akselrod S. Spectral analysis of fluctuations in cardiovascular parameters: a quantitative tool for the investigation of autonomic control. Trends Pharmacol Sci. 1988;9:6–9. - PubMed
-
- Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213:220–222. - PubMed
-
- Alvarenga ME, Richards JC, Lambert G, Esler MD. Psychophysiological mechanisms in panic disorder: a correlative analysis of noradrenaline spillover, neuronal noradrenaline reuptake, power spectral analysis of heart rate variability, and psychological variables. Psychosom Med. 2006;68:8–16. - PubMed
-
- Aysin B, Aysin E. Effect of respiration in heart rate variability (HRV) analysis. Conf Proc IEEE Eng Med Biol Soc. 2006;1:1776–1779. - PubMed
-
- Baumert M, Lambert GW, Dawood T, Lambert EA, Esler MD, McGrane M, Barton D, Sanders P, Nalivaiko E. Short-term heart rate variability and cardiac norepinephrine spillover in patients with depression and panic disorder. Am J Physiol Heart Circ Physiol. 2009;297:H674–679. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources