Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Apr 15;20(8):1610-24.
doi: 10.1093/hmg/ddr038. Epub 2011 Jan 31.

A complex regulatory network of transcription factors critical for ocular development and disease

Affiliations

A complex regulatory network of transcription factors critical for ocular development and disease

Moulinath Acharya et al. Hum Mol Genet. .

Abstract

The PITX2 'homeobox' and FOXC1 and FOXC2 'forkhead box' transcription factors are critical for eye development and cause human ocular diseases when mutated. We have identified biochemical and genetic links between these transcription factors and a transcriptional regulator protein PRKC apoptosis Wilms' tumor 1 regulator (PAWR) that we propose to functionally connect all these proteins in a common pathway critically involved in eye development. We discovered all binary physical interactions between FOXC1, PITX2, FOXC2 and PAWR. Importantly, PAWR modulates the abilities of PITX2, FOXC1 and FOXC2 to activate their genetic targets. Together with either FOXC1 or FOXC2, PAWR increases PITX2 activity. PAWR reduces PITX2 activity in the absence of FOXC1 or FOXC2. At the same time, PAWR also exerts different regulatory effects on different FOXC target sites. Furthermore, morpholino knockdown of pitx2, foxc1 and pawr in zebrafish indicate that PAWR, FOXC1 and PITX2 genetically interact, and are in the same developmental pathway. These data for the first time tie PITX2, FOXC1, FOXC2 and PAWR into a common regulatory pathway. We have therefore identified a functional link between three transcription factors, modulated by PAWR, which we propose underlies the similar ocular phenotypes and glaucoma pathology caused by mutations of these genes.

PubMed Disclaimer

Publication types

MeSH terms