Oxidative stress causes renal angiotensin II type 1 receptor upregulation, Na+/H+ exchanger 3 overstimulation, and hypertension
- PMID: 21282559
- DOI: 10.1161/HYPERTENSIONAHA.110.162339
Oxidative stress causes renal angiotensin II type 1 receptor upregulation, Na+/H+ exchanger 3 overstimulation, and hypertension
Abstract
Oxidative stress modulates angiotensin (Ang) II type 1 receptor (AT(1)R) expression and function. Ang II activates renal Na(+)/H(+) exchanger 3 (NHE3) to increase sodium reabsorption, but the mechanisms are still elusive. In addition, the upregulation of AT(1)R during oxidative stress could promote sodium retention and lead to an increase in blood pressure. Herein, we investigated the mechanism of Ang II-mediated, AT(1)R-dependent renal NHE3 regulation and effect of oxidative stress on AT(1)R signaling and development of hypertension. Male Sprague-Dawley rats received tap water (control) or 30 mmol/L of l-buthionine-sulfoximine, an oxidant, with and without 1 mmol/L of Tempol, an antioxidant, for 3 weeks. l-Buthionine-sulfoximine-treated rats exhibited oxidative stress and high blood pressure. Incubation of renal proximal tubules with Ang II caused significantly higher NHE3 activation in l-buthionine-sulfoximine-treated rats compared with control. The activation of NHE3 was sensitive to AT(1)R blocker and inhibitors of phospholipase C, tyrosine kinase, janus kinase 2 (Jak2), Ca(2+)-dependent calmodulin (CaM), and Ca(2+) chelator. Also, incubation of proximal tubules with Ang II caused Jak2-dependent CaM phosphorylation, which led to Jak2-CaM complex formation and increased Jak2-CaM interaction with NHE3. The activation of these signaling molecules was exaggerated in l-buthionine-sulfoximine-treated rats, whereas Tempol normalized the AT(1)R signaling. In conclusion, Ang II activates renal proximal tubular NHE3 through novel pathways that involve phospholipase C and an increase in intracellular Ca(2+), Jak2, and CaM. In addition, oxidative stress exaggerates Ang II signaling, which leads to overstimulation of renal NHE3 and contributes to an increase in blood pressure.
Comment in
-
Linking oxidative stress, the renin-angiotensin system, and hypertension.Hypertension. 2011 Mar;57(3):373-4. doi: 10.1161/HYPERTENSIONAHA.110.167775. Epub 2011 Jan 31. Hypertension. 2011. PMID: 21282556 No abstract available.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
