Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Sep;9(7):747-58.
doi: 10.1111/j.1467-7652.2010.00584.x. Epub 2011 Feb 1.

Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress

Affiliations
Free article

Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress

Zvi Peleg et al. Plant Biotechnol J. 2011 Sep.
Free article

Abstract

Drought is the major environmental factor limiting crop productivity worldwide. We hypothesized that it is possible to enhance drought tolerance by delaying stress-induced senescence through the stress-induced synthesis of cytokinins in crop-plants. We generated transgenic rice (Oryza sativa) plants expressing an isopentenyltransferase (IPT) gene driven by P(SARK) , a stress- and maturation-induced promoter. Plants were tested for drought tolerance at two yield-sensitive developmental stages: pre- and post-anthesis. Under both treatments, the transgenic rice plants exhibited delayed response to stress with significantly higher grain yield (GY) when compared to wild-type plants. Gene expression analysis revealed a significant shift in expression of hormone-associated genes in the transgenic plants. During water-stress (WS), P(SARK)::IPT plants displayed increased expression of brassinosteroid-related genes and repression of jasmonate-related genes. Changes in hormone homeostasis were associated with resource(s) mobilization during stress. The transgenic plants displayed differential expression of genes encoding enzymes associated with hormone synthesis and hormone-regulated pathways. These changes and associated hormonal crosstalk resulted in the modification of source/sink relationships and a stronger sink capacity of the P(SARK)::IPT plants during WS. As a result, the transgenic plants had higher GY with improved quality (nutrients and starch content).

PubMed Disclaimer

Publication types

MeSH terms