Angiotensin II Type-2 receptors modulate inflammation through signal transducer and activator of transcription proteins 3 phosphorylation and TNFα production
- PMID: 21288138
- PMCID: PMC3104285
- DOI: 10.1089/jir.2010.0043
Angiotensin II Type-2 receptors modulate inflammation through signal transducer and activator of transcription proteins 3 phosphorylation and TNFα production
Abstract
Angiotensin subtype-1 receptor (AT(1)R) influences inflammatory processes through enhancing signal transducer and activator of transcription proteins 3 (STAT3) signal transduction, resulting in increased tumor necrosis factor-α (TNF-α) production. Although angiotensin subtype-2 receptor (AT(2)R), in general, antagonizes AT(1)R-stimulated activity, it is not known if AT(2)R has any anti-inflammatory effects. In this study, we tested the hypothesis that AT(2)R activation plays an anti-inflammatory role by reducing STAT3 phosphorylation and TNF-α production. Changes in AT(2)R expression, TNF-α production, and STAT3 phosphorylation were quantified by Western blotting, Bio-Plex cytokine, and phosphoprotein cellular signaling assays in PC12W cells that express AT(2)R but not AT(1)R, in response to the AT(2)R agonist, CGP-42112 (CGP, 100 nm), or AT(2)R antagonist PD-123319 (PD, 1 μm). A 100% increase in AT(2)R expression in response to stimulation with its agonist CGP was observed. Further, AT(2)R activation reduced TNF-α production by 39% and STAT3 phosphorylation by 83%. In contrast, PD decreased AT(2)R expression by 76%, increased TNF-α production by 84%, and increased STAT3 phosphorylation by 67%. These findings suggest that increased AT(2)R expression may play a role in the observed decrease in inflammatory pathway activation through decreased TNF-α production and STAT3 signaling. Restoration of AT(2)R expression and/or its activation constitute a potentially novel therapeutic target for the management of inflammatory processes.
Figures
References
-
- Barber MN. Sampey DB. Widdop RE. AT(2) receptor stimulation enhances antihypertensive effect of AT(1) receptor antagonist in hypertensive rats. Hypertension. 1999;34(5):1112–1116. - PubMed
-
- Bascands JL. Girolami JP. Troly M. Escargueil-Blanc I. Nazzal D. Salvayre R. Blaes N. Angiotensin II induces phenotype-dependent apoptosis in vascular smooth muscle cells. Hypertension. 2001;38(6):1294–1299. - PubMed
-
- Beasley D. Phorbol ester and interleukin-1 induce interleukin-6 gene expression in vascular smooth muscle cells via independent pathways. J Cardiovasc Pharmacol. 1997;29(3):323–330. - PubMed
-
- Carey RM. Howell NL. Jin XH. Siragy HM. Angiotensin type 2 receptor-mediated hypotension in angiotensin type-1 receptor-blocked rats. Hypertension. 2001;38(6):1272–1277. - PubMed
-
- Carey RM. Siragy HM. Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev. 2003;24(3):261–271. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
